Undate in Action

Rebecca Sutton Koeser!

! Center for Digital Humanities, Princeton University, Princeton, New Jersey, USA
Abstract

This paper provides an introduction to the undate python library with an emphasis on demon-
strating supported functionality with some example use cases from specific projects. undate
is designed for working with uncertain and partially known dates, and also includes support
for dates in multiple calendars and with mixed precision. This paper provides an overview
of the basic functionality with comparison to the Python built-in datetime.date, demon-
strating support for missing and partially known values. Use cases and data from Princeton
Geniza Project and Shakespeare and Company Project are used to further demonstrate the
value and practical application of undate for parsing and comparing mixed precision dates
in multiple calendars, and for calculating and plotting durations for events with known days
but unknown years. This paper was originally presented as a “tool presentation” at the Digital
Humanities Tech Symposium at DH2025.1

Keywords: dates, calendars, partial information, missing data, software, digital human-
ities, python

1 Introduction

undate is a python library for working with uncertain or partially known dates, with support for
multiple calendars [5]. It is “an ambitious in-progress effort to develop a pragmatic Python package
for the computation and analysis of temporal information in humanistic and cultural data, with a
particular emphasis on uncertain, incomplete or imprecise dates and with support for multiple cal-
endaring systems and date formats” [6]. The software is freely available on GitHub? and published
under an open source software license. This project was originally started at a DHTech Hackathon
[4], and builds on experiences from other digital humanities projects. The ultimate goal is to build
an active community of people that are using and maintaining the project, and developing it further.

Ul

Figure 1: undate project logo.

For an in-depth understanding of the context, goals, humanities and software development
methodologies that inform the project, and a comparison with related software, I encourage you
to read the software paper “Undate: humanistic dates for computation” [6]. The logo (Figure 1)

Rebecca Sutton Koeser.  “Undate in Action.” In: Digital Humanities Tech Symposium 2025, ed. by Julia
Damerow and Rebecca Sutton Koeser. Vol. 2. Anthology of Computers and the Humanities. 2025, 38-53.
https://doi.org/10.63744/SFtX XpIE4ERh.

! An interactive version of the tool presentation is available online in the form of a Marimo notebook at
https://rlskoeser.github.io/undate-in-action/
2 https://github.com/dh-tech/undate-python/

38


https://orcid.org/0000-0002-8762-8057
https://doi.org/10.63744/SFtXXpIE4ERh
https://creativecommons.org/licenses/by/4.0
https://rlskoeser.github.io/undate-in-action/
https://github.com/dh-tech/undate-python/

was designed as a reminder of the competing needs for nuanced human-readable information and
computationally tractable data.

1.1 How is Undate like datetime.date?

Before describing undate’s functionality for handling uncertain dates, first, as a point of reference,
I demonstrate how it compares with the standard Python datetime.date implementation.

Both an undate.Undate and a datetime.date can be initialized by specifying numeric
values for year, month, and day. Both can be printed using the default serialization (ISO8601,
or YYYY-MM-DD). undate is compatible with datetime.date, so we can also can compare
these two objects. This means that undate can be easily used instead of or in conjunction with
datetime.date.

import
from import Undate
year, month, day = 2000, 11, 7

# these are equivalent and we initialize them the same way
dt_november7 = datetime.date(year, month, day)
november7 = Undate(year, month, day)

assert november7 == dt_november7

1.2 How is Undate not like datetime.date?

However, there are some key differences between the packages. An Undate can be initialized with
partial information. Undate can also take an optional label, since sometimes it’s useful to name a
date. It can be initialized with year and month, just year, or even month and day with no year.

# November 2000

november = Undate(year, month, label="November 2000")

# Year 2000

year2k = Undate(year, label="Y2K")

# November 7 in an unknown year

november7_some_year = Undate(month=month, day=day,
label="Some November 7")

november7.label = "November 7, 2000"

# sometimes names are important
easter1916 = Undate(1916, 4, 23, label="Easter 1916")

If you try to do that with datetime.date, you get a TypeError because all three fields are
required.

try:

datetime.date(year, month)
except TypeError as err:

print (err)

"function missing required argument 'day' (pos 3)"

39



Each of these Undate objects can be printed out in a standard format; the Undate class also
tracks how precisely a date is specified, and can calculate the duration. If we iterate over the
example partially-known dates initialized in the code block above and print label, formatted date,
precision, and duration in days, we get output like this (here and throughout, formatting has been
added for readability):

for example_date in [
november,
year2k,
november7_some_year,
november7,
easter1916,

print (f"""{example_date.label} {example_date}
- Date precision: {example_date.precision}
- Duration in days: {example_date.duration().days}""")

November 2000 2000-11

* Date precision: MONTH

* Duration in days: 30
Y2K 2000

* Date precision: YEAR

* Duration in days: 366
Some November 7 --11-07

* Date precision: DAY

* Duration in days: 1
November 7, 2000 2000-11-07

» Date precision: DAY

* Duration in days: 1
Easter 1916 1916-04-23

 Date precision: DAY

* Duration in days: 1

We can also do some simple calculations, like checking whether one date falls within another
date.

assert november in year2k # 2000-11 2n 2000

assert november7 in november # 2000-11-07 in 2000-11

assert easter1916 not in year2k # 1916-02-23 not in 2000
assert november7_some_year not in year2k # —-11-07 not wn 2000

40



2 What else can Undate do?
2.1 Partially known values

In the last set of examples, the values used to initialize Undate instances were all integers and parts
of the date were either known or unknown. But what if you know part of a date?

You can initialize Undate with strings and use X to indicate unknown values. (We chose X
based on the Extended Date Time Format (EDTF) specification).

Here we initialize two dates with partially known information, where a year or month cannot
be precisely pinned down but some information is known. As before, we can iterate over these
dates and output label, formatted date, precision, and duration:

someyear_1900s = Undate("19XX", label="1900s")
late2022 = Undate(2022, "1X", label="late 2022")

for example_date in [someyear_1900s, late2022]:
print (f"""{example_date.label} {example_datel}
- Date precision: {example_date.precision}
- Duration in days: {max(example_date.duration() .days)?}

nn n)

1900s 19XX
* Date precision: YEAR
* Duration in days: 366
late 2022 2022-1X
* Date precision: MONTH
* Duration in days: 31

If you to initialize a datetime.date object like this, you get another TypeError.

try:

datetime.date("19XX", 1, 1)
except TypeError as err:

print (err)

str' object cannot be interpreted as an integer"

2.2 Uncertain durations

If you were paying close attention, you may have noticed I used the max () function in the code
block above where I output the duration for the partially known dates.

The most recent version of undate (version 0.5) includes experimental support for uncertain
time deltas. This is just one aspect of support for working with dates and date ranges in terms of
duration. The undate package also includes an UndateInterval class, with first-class support
for date ranges between two uncertain dates, or an open interval starting or ending with an Undate.
For reasons of space, I don’t discuss the interval functionality in this paper.

41


https://www.loc.gov/standards/datetime/

print (£"""{someyear_1900s.label} {someyear_1900s}
- duration: {someyear_1900s.duration()}
- duration in days: {someyear_1900s.duration() .days}

{late2022.1label} {late2022}
- duration: {late2022.duration()}
- duration in days: {late2022.duration() .days}

nn H)

1900s 19XX

* duration: UnDelta(days=[365,366])

¢ duration in days: UnInt (lower=365, upper=366)
late 2022 2022-1X

* duration: UnDelta(days=[30,31])

* duration in days: UnInt (lower=30, upper=31)

Even without precise information, we can still do some useful comparisons. February of an
unknown year is still shorter than October, November, or December.

some_february = Undate(month=2, label="February of some year")
# February of an unknown year ©s shorter than

# an uncertain month 1X (October, November, or December)
assert some_february.duration() < late2022.duration()

print (f"""{some_february.label} {some_february}
- duration: {some_february.duration()}
- duration in days: {some_february.duration().days}

nn u)

February of some year --02
* duration: UnDelta(days=[28,29])

* duration in days: UnInt (lower=28, upper=29)

3 Example use cases from specific projects

undate is informed by work from existing digital humanities projects, and has been developed with
the goal of generalizing custom solutions into a reusable library to benefit the whole community.
In particular, “undate draws on a partial date implementation from the Shakespeare and Com-
pany Project and calendar conversion and mixed precision dates in the Princeton Geniza Project
(PGP). Calendar logic and representation is additionally informed by work on the Islamic Scientific
Manuscripts Initiative (ISMI)” [6].

42



3.1 Princeton Geniza Project

The Princeton Geniza Project (PGP) is a long-running project focused on materials from a syna-
gogue in Cairo; these contents are primarily medieval, and largely written in Hebrew script. Be-
cause they are older and fragmentary, many of them cannot be dated; those documents that do have
dates use a variety of calendars — the Hebrew Anno Mundi and Seleucid calendars, as well as the
Islamic Hijri calendar. The Hebrew calendar is a lunisolar calendar and the Islamic calendar is a
lunar calendar, so they don’t map neatly to the months and years of the Gregorian calendar.

The PGP is one of the precursors that fed into the development of undate, due to this need to
support storing, filtering, and searching dates from multiple calendars, with mixed precision, and
various kinds of temporal uncertainty [10]. Here, I use data from the published PGP datasets [11]
to demonstrate undate calendar parsing and conversion functionality.

An Undate instance preserves any initial values for year, month, and day in the original cal-
endar. As you see in Table 1, the ISO format Undate corresponds to the original date rather than
the standardized date.

Original Date Calendar Standard date Undate Precision Weekday
1570 Seleucid 1259 1570 year
Tammuz 1288  Seleucid 0977-06-21/0977-07-19  1288-04 month
19 Adar 1427  Seleucid 1116-03-05 1427-12-19 day Sunday
4890 Anno Mundi 1129-09-16/1130-09-05 4890 year
Av 5564 Anno Mundi  1804-07-09/1804-08-07 5564-05 month
10 Nisan 4716 Anno Mundi 0956-03-24 4716-01-10 day Monday
537 Hijrl 1142-07-27/1143-07-15 0537 year
Shawwal 425 Hijr1 1034-08-29/1034-09-07  0425-10 month
5 Safar 584 Hijr1 1188-04-05 0584-02-05 day Tuesday

Table 1: A sampling of dates from PGP documents in different calendars; dates have been parsed
by Undate, which was then used to report precision and weekday.

Under the hood, undate calculates the earliest and latest possible dates in range for compar-
ison and sorting. When an Undate object is initialized with a different calendar, the earliest and
latest dates are based on conversion to the Gregorian calendar so that dates can be compared and
used together across calendars. (The code used to parse the PGP document dates displayed in
this example is available in Appendix A). When working across calendars, dates with the same
precision (year, month) often have different durations in days.

AnUndate object is aware of date precision, which means that in a dataset with mixed precision
dates like PGP, once dates are parsed we can easily see the variation in the data (Table 2).3

Preserving available details in mixed precision dates offers new opportunities for analysis; for
instance, we can analyze weekday frequency by document type (Figure 2). In the PGP data, Legal
documents and letters are the types of documents most likely to have a clear date. When visualized
with a heatmap, the results match our expectations: Saturday is light for both types, because it is
the Hebrew Shabbat, a day of rest. Monday and Thursday are the traditional convening days for
court sessions, which is reflected in the preponderance of Legal documents on those days.*

3 With the caveat that in this case the results are somewhat skewed by the dates that can easily be parsed; PGP data
includes modifiers not yet supported by undate, which were ignored during parsing.
* Analysis and visualization adapted from prior work. [6]

43


https://geniza.princeton.edu/

Original Date precision Documents

year 831
month 1,021
day 1,558

Table 2: Totals for PGP documents and date precision

Only includes documents with standard dates that can be parsed by undate.

Original Date Calendar Undate Earliest Latest Precision Duration
1570  Seleucid 1570 1258-09-07 1259-09-26 year 383
1474  Seleucid 1474 1162-09-18 1163-09-06 year 354
Tevet 1363  Seleucid 1363-10 1051-12-14 1052-01-11 month 29
[12]91 Seleucid 1291 0979-09-30 0980-09-17 year 353
Heshvan 1453  Seleucid 1453-08 1141-10-11 1141-11-08 month 29
1347  Seleucid 1347 1035-09-12  1036-09-28 year 383
Shevat (4)791 Anno Mundi 4791-11 1031-01-03 1031-02-01 month 30
4812 Anno Mundi 4812 1051-09-15 1052-09-03 year 385
502 Hijrl 0502 1108-08-18 1109-08-06 year 354
Muharram 557  Hiji1 0557-01 1161-12-28 1162-01-26 month 30
Safar 1248 Hijrn 1248-02 1832-06-30 1832-07-28 month 29

Table 3: Another sampling of dates from PGP documents in different calendars parsed by Undate.
Earliest and latest dates are calculated in Gregorian / proleptic Gregorian calendar. Semantic du-
rations like year and month result in different durations in days when working with multiple cal-
endars.

3.2 Shakespeare and Company Project

The Shakespeare and Company Project is based on the materials from Sylvia Beach’s famous
English-language lending library that operated in Paris in the 1920s and 1930s. This project is
one of the precursors that fed into the development of undate, with an implementation to support
incomplete dates written on handwritten cards [3, 9].

This project includes borrowing events with unknown years; with undate we can calculate
how long a book was borrowed even when we don’t know the exact year. We use Gertrude Stein
as an example here, since she is a well known figure with documented borrowing activity without
known years (Figure 3), although she is far from the only one.®> Stein has 46 borrow events with
calculable duration; of those 7, or 15%, have no known year. If we limit our analysis to borrow
events with known years, we arrive at an average borrow length of 32 days and a maximum of
91 days. However, when we include events with unknown years we get an average of 38 and a
maximum of 126 days. In the context of this project, we calculate the duration of borrow events
with unknown years as the shortest possible duration between the start and end date; that is, the the
dates are in the same year (or following year, when the end date is an earlier month than the start
date). This is based on our assumption that the clerks working in the book shop would have noted
the year if the book was out for a longer time period, as they did in other cases.

The full code used to calculate durations and plot them is available in Appendix B. Here we

> Stein is famous enough that these unknowns could perhaps be resolved through research; that is not the case for the
lesser known members of this library.

44


https://shakespeareandco.princeton.edu/

Documents

Legal document . . I444

265

. - Documents
Letter I84

42

Monday |
Tuesday -|
Wednesday -|
Thursday |
Friday -|
Saturday |
Sunday -

Figure 2: Legal documents and letters frequency by weekday.

SIEW, M bortiuda

ATy
o} Hozop &) Néungmym

24 ~ad (-1 oS Hiog
\éﬁ RolvEn s (oo anE
G~ CoRce. Koo
UWaldion~ SO buer™
F&\ e COM(USTG‘L'\
. (s ol

Figure 3: Detail from Gertrude Stein’s lending library card showing handwritten borrow events

with no year. [1, 2]
Year

@ known
unknown

L o '
r T T T T T T T T T T T T T T T T T T T T T T T T T 1
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130
Borrow duration in days

Figure 4: Raincloud plot showing how long Gertrude Stein typically kept the books she borrowed
Borrows with unknown years are highlighted in orange in the lower portion (the “rain”) of the plot.

show a sample of the parsed borrow events (Table 4) and a raincloud plot of Stein’s borrowing
(Figure 4) to demonstrate the value of including partial information in our analysis. As you can
see, leaving out partially known dates would greatly change the distribution.

45



Start Date End Date Duration Title Author

-01-19 -01-24 5 A Hazard of New Fortunes Howells, William Dean
-01-24 -05-30 126 Boston Cooking-School Cook Book Farmer, Fannie Merritt
-01-24 -03-20 55 The Landlord at Lion’s Head Howells, William Dean
—01-24 —05-30 126 Mrs. Rorer’s New Cook Book Rorer, Sarah Tyson
-01-24 -03-20 55 Indian Summer Howells, William Dean
-01-24 -03-20 55 A Foregone Conclusion Howells, William Dean
-01-24 -03-20 55 Dr. Breen’s Practice Howells, William Dean
1920-04-29 1920-06-03 35 The Letters of George Meredith Meredith, George

Table 4: Sample borrowing activity for Gertrude Stein at the Shakespeare and Company lending
library in Paris, including borrow events with unknown years but calculable durations.

4 Conclusion

This paper provides a demonstration of some of the current functionality of the undate python
library, although it is certainly not exhaustive. I have barely touched on intervals and some of
the calculations and logic around uncertainty that are currently supported. This package is still
in active development, with tremendous potential in multiple directions. I and my collaborators
plan to continue adding support for more calendars and formats (e.g., RDF and CIDOC-CRM), and
improve the support for ambiguity and granularity in parsing and date precisions. Other avenues of
interest are representing the temporal uncertainty in data visualizations based on undate parsing
and analysis [12], or making more use of labels for analysis. Development on undate input and use
cases from the community to steer and prioritize the work, to ensure that work is interpretable and
usable in the context of a specific project while still being general enough to be usable and accurate
across disparate projects. As undate matures, I hope to start seeing it used in more projects, and
we would love to know if there is an interest or need in adapting it to other programming languages
or extending it for specific ecosystems and frameworks.

Acknowledgements

This work is supported by the Center for Digital Humanities at Princeton University. Thanks to my
reviewers, especially: David Ragnar Nelson, who caught and corrected several errors in the code
examples introduced in the conversion from notebook to paper; and Julia Damerow, for suggestions
to improve the flow.

References
[1] Beach, Sylvia. “Stein, Gertrude; Sylvia Beach Papers”. C0108. Manuscripts Division, De-
partment of Special Collections, Princeton University Library.

[2] “Gertrude Stein”. Shakespeare and Company Project. Publisher: Center for Digital Hu-
manities, Princeton University. URL: https://shakespeareandco.princeton. edu/
members/stein-gertrude/.

[3] Koeser, Rebecca Sutton. “Coding with Unknowns”. Dec. 2019. URL: https: //cdh.
princeton.edu/blog/2019/12/05/coding-unknowns/.

[4] Koeser, Rebecca Sutton. “Join me for a DHTech hackathon? It’s an un-date!” Feb. 2023.
URL: https://dh-tech.github.io/blog/2023/02/09/hackathon-undate/.

[5] Koeser, Rebecca Sutton, Crawford, Cole, Damerow, Julia, Vogl, Malte, and Casties, Robert.
“undate python library”. July 2025. DOI: 10.5281/zenodo.11068867.

46


https://shakespeareandco.princeton.edu/members/stein-gertrude/
https://shakespeareandco.princeton.edu/members/stein-gertrude/
https://cdh.princeton.edu/blog/2019/12/05/coding-unknowns/
https://cdh.princeton.edu/blog/2019/12/05/coding-unknowns/
https://dh-tech.github.io/blog/2023/02/09/hackathon-undate/
https://doi.org/10.5281/zenodo.11068867

(6]

(7]

(8]

[9]

[10]

[11]

[12]

Koeser, Rebecca Sutton, Damerow, Julia, Casties, Robert, and Crawford, Cole. “Undate:
humanistic dates for computation”. In: Computational Humanities Research 1 (2025), e5.
DOI: 10.1017/chr.2025.10006.

Koeser, Rebecca Sutton and Kotin, Joshua. “Shakespeare and Company Project Datasets™.
Publisher: Princeton University. 2025. URL: https://doi.org/10.34770/kf6c-b079.

Koeser, Rebecca Sutton and LeBlanc, Zoe. “Missing Data, Speculative Reading”. In: Jour-
nal of Cultural Analytics 9, no. 2 (May 2024). DOI: 10.22148/001c.116926.

Kotin, Joshua and Koeser, Rebecca Sutton. “Shakespeare and Company Project Data Sets™.
In: Journal of Cultural Analytics 7, no. 1 (Feb. 2022). DOI: 10.22148/001c.32551.

Rustow, Marina. “Dating Problems? Ask the Princeton Geniza Project Team”. Nov. 2020.
URL: https://cdh.princeton.edu/blog/2020/11/18/dating-problems-ask-
princeton-geniza-project-team/.

Rustow, Marina, Koeser, Rebecca Sutton, Richman, Rachel, Ryzhova, Ksenia, Bensalim,
Amel, and Mohamed, Abdellatif. “Princeton Geniza Project Dataset”. July 2025. DOI: 10.
5281/zenodo.158390565.

Yau, Nathan. “Visualizing the Uncertainty in Data”. Jan. 2018. URL: https : / /
flowingdata.com/2018/01/08/visualizing-the-uncertainty-in-data/.

A Parsing PGP document dates in multiple calendars

Princeton Geniza Project data includes documents with original dates in multiple calendars.
undate does not yet provide an omnibus parser, so dates must be parsed according to their a
known, supported calendar. The dates in this dataset are complicated and messy, and include
qualifiers and uncertainty not yet supported by undate parsing. For demonstration purposes, this
example code removes and ignores those complexities.

Adapted from an example notebook included in the undate software repository.

import

from import UnexpectedEOF
from import VisitError
import as

# set this to True to see detatils about parsing
VERBOSE_PARSE_OUTPUT = False

def

def

remove ordinals(val):

# utility method to turn ordinals into numerals
# 1.e., 1st, 2nd, 3rd > 1, 2, 3

return re.sub(r" (\d+) (st|nd|rd|th)", "\\1", val)

parse_original_date(doc_date_original, doc_date_calendar):
# Map PGP original calendar to undate calendar converter
undate_calendar = None

if doc_date_calendar == "Anno Mundi'":

47


https://doi.org/10.1017/chr.2025.10006
https://doi.org/10.34770/kf6c-b079
https://doi.org/10.22148/001c.116926
https://doi.org/10.22148/001c.32551
https://cdh.princeton.edu/blog/2020/11/18/dating-problems-ask-princeton-geniza-project-team/
https://cdh.princeton.edu/blog/2020/11/18/dating-problems-ask-princeton-geniza-project-team/
https://doi.org/10.5281/zenodo.15839055
https://doi.org/10.5281/zenodo.15839055
https://flowingdata.com/2018/01/08/visualizing-the-uncertainty-in-data/
https://flowingdata.com/2018/01/08/visualizing-the-uncertainty-in-data/
https://github.com/dh-tech/undate-python/blob/main/examples/pgp_dates.ipynb

undate_calendar = "Hebrew"

elif doc_date_calendar == "Hijri":
undate_calendar = "Islamic"

elif doc_date_calendar == "Seleucid":
undate_calendar = "Seleucid"

if undate_calendar:
value = doc_date_original

# some dates have unknown digits, e.g. 1[.] Kislev 48[..] or 152[.]
# Replace with zeros for mow, since the calendar parsers
# doesn't yet support this syntaz
# (even though Undate supports unknown digits)
if "[." in value:
if VERBOSE_PARSE_OUTPUT:
print(f"ignoring missing digits for now {value}")
value = (
value.replace("[.1", "0")
.replace("[..]", "00")
.replace("[...]", "000")

# some dates have inferred numbers,
# e.g. Friday, [25] Nisan [4810] or 8 Elul (4)811'
# for nmow, we strip out brackets before parsing;
# in future, we could indicate uncertainty based on these
value = (
value.replace("[", "")
.replace("]", "")
.replace(" (", "")
.replace(")", "")

# for mow, remove modifiers not supported by the undate parser:
# Late Tevet 4903, Last decade of Kislev 5004, first third of ...
modifiers = [
"Late ",
"(first|middle|last) ( third|half|decade|tenth)? (of )?",
"(Beginning|end) of ",
"last day",
"First 10 days",
" of",
"spring",
"decade ",
"night, ",
]
for mod in modifiers:
value = re.sub(mod, "", value, flags=re.I)

48



# about 62 have ordinals; strip them out
value = remove ordinals(value)

# parse the simplified, cleaned up date string

# with the spectified calendar

try:
return Undate.parse(value, undate_calendar)

except (VisitError, ValueError, UnexpectedEOF) as err:
if VERBOSE_PARSE_QOUTPUT:

print(f"Parse error : {value} ({undate_calendar}): {err}")

return None

# Use Polars to load data file into a DataFrame
# Filter to documents with standard dates
pgp_documents_df = pl.read_csv("pgp_documents.csv") \
.filter(
pl.col("doc_date_standard").is_not_null()

# Create a struct of original date and calendar,
# which we can pass to our parse method.
# If parsing succeeds, returns and Undate or Undatelnterwval
pgp_documents_df = pgp_documents_df.with_columns(
undate_orig=pl.struct(
"doc_date_original", "doc_date_calendar"
) .map_elements (
lambda row: parse_original_date(
row["doc_date_original"], row["doc_date_calendar"]
),
return_dtype=pl.datatypes.0Object,

days = [
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday",
"Sunday",

# filter to records that were successfully parsed;
# determine weekday for use with day-level precision dates

pgp_documents_df = (
pgp_documents_df.filter(pl.col("undate_orig").is_not_null())
.with_columns(

pl.col("type").fill null ("Unknown"), # set null type to unknown

49



orig_date_precision=pl.col("undate_orig") .map_elements(
lambda x: str(x.precision).lower(),
return_dtype=pl.datatypes.String,
P
undate_weekday=pl.col("undate_orig") .map_elements(
lambda x: x.earliest.weekday, return_dtype=pl.datatypes.Int32
Do
)
.with_columns(
undate_weekday_name=pl.col("undate_weekday") .map_elements(
lambda x: days[x], return_dtype=pl.datatypes.String

# filter to relevant fields and display the first ten rows

pgp_documents_df .select(
"pgpid",
"type",
"doc_date_original",
"doc_date_calendar",
"doc_date_standard",
"undate_orig",
"orig_date_precision",
"undate_weekday_name",

) .head (10)

B Determine and plot durations for Shakespeare and Company Project borrowing

This project includes borrowing events with unknown years; with undate we can calculate how
long a book was borrowed even when we don’t know the year.
First we define a couple of methods that we’ll use with the data:

* undate_duration to parse the dates and calculate duration in days

* known_year to provide an indicator for whether the year was known, which we’ll use when
plotting the data

We load the full events data from the Shakespeare and Company published datasets [7] and
filter it to borrow events for Gertrude Stein based on event_type and member_ids. Then we
use the custom methods defined first to calculate borrow durations and add a variable indicating
whether the year is known.

Finally, we define and use a method to generate a raincloud plot, showing the distribution of
borrow durations in two different ways, and color the rain drops in the lower portion of the plot to
highlight the durations based on borrow events with unknown years. (The raincloud plot is adapted
from prior work in [8].)

import as
from import Undatelnterval
from import ONE_DAY, UnInt

50



from undate.converters.iso8601 import IS08601DateFormat

def undate_duration(start_date, end_date):
isoformat = IS08601DateFormat ()

unstart = isoformat.parse(start_date)
unend = isoformat.parse(end_date)
interval = UndateIlnterval(earliest=unstart, latest=unend)

# borrow durations in Shakespeare and Company Project were defined as
# not including both ends (or half of the day on both ends);

# to reconcile differences between duration logic with undate,

# which includes both endpoints, we subiract one day

return (interval.duration() - ONE_DAY) .days

def known_year(date):
return "known" if IS08601DateFormat() .parse(date).known_year else "unknown"

stein borrow_events df = (
pl.read_csv("SCoData_events_v2.0_2025.csv", infer_schema_length=10000)
.filter(
pl.col("member_ids").eq("stein-gertrude"),
pl.col("event_type").eq("Borrow"),
# for simplicity, we're going to limit to events that Project
# provides a borrow duration for; this indicates
# the duration is calculable (i.e., start and end dates known)
pl.col("borrow_duration_days").is_not_null(),
)
.select (
"event_type",
"start_date",
"end_date",
"borrow_duration_days",
"item_title",
"item_authors",
"item_year",

# calculate durations; returns a dataframe with one column
duration_df = stein_borrow_events_df.select("start_date", "end_date") .map_rows(
lambda x: undate_duration(x[0], x[1]), return_dtype=pl.datatypes.Int32

# add fields to the main dataframe for duration and whether year is known
stein_borrow_events_df = stein_borrow_events_df.with_columns(

51



undate_duration=duration_df ["map"],
known_year=stein_borrow_events_df ["start_date"] .map_elements(
known_year, return_dtype=pl.datatypes.String

),

def raincloud_plot(dataset, fieldname, field_label, color_opts=None):
"""Create a raincloud plot for the density of the specified field
in the given dataset. Takes an optional tooltip for the strip plot.
Returns an altair chart.”"""

# create a density area plot of specified fieldname

duration_density = (
alt.Chart (dataset)
.transform_density(
fieldname,
as_=[fieldname, "density"],

)
.mark_area(orient="vertical")
.encode (
x=alt.X(
fieldname, title=None, axis=alt.X(labels=False, ticks=False)
),
y=alt.Y(
"density:Q",
# suppress labels and ticks because we're going to combine this
title=None,
axis=alt.Axis(
labels=False, values=[0], grid=False, ticks=False
Jo
),
)

.properties(height=100, width=800)

# Now create jitter plot of the same field
# jittering / stripplot adapted from https://stackoverflow.com/a/71902446/9706217

chart_color_opts = {}
if color_opts is not None:
chart_color_opts = {"color": color_opts}

stripplot = (
alt.Chart(dataset)
.mark_circle(size=50)
.encode(
x=alt.X(

52



fieldname,
title=field_label,
axis=alt.Axis(labels=True),
),
y=alt.Y("jitter:Q", title=None, axis=None),
**chart_color_opts,
# color=alt.Color(color_by), # .scale(**color_scale),
)
.transform_calculate(jitter="(random() / 200) - 0.0052")
.properties(
height=120,
width=800,

# use wvertical concat to combine the two plots together

raincloud_plot = alt.vconcat(duration_density, stripplot).configure_concat(
spacing=0

)

return raincloud_plot

stein_borrows_plot = raincloud_plot(
stein_borrow_events_df,
"undate_duration",
"Borrow duration in days",
alt.Color("known_year", title="Year"),

53



	Introduction
	How is Undate like datetime.date?
	How is Undate not like datetime.date?

	What else can Undate do?
	Partially known values
	Uncertain durations

	Example use cases from specific projects
	Princeton Geniza Project
	Shakespeare and Company Project

	Conclusion
	Parsing PGP document dates in multiple calendars
	Determine and plot durations for Shakespeare and Company Project borrowing

