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Abstract

This short paper reports on work in progress to develop a pipeline for the digitization of a two-
column format print bibliography as structured data for query. Print bibliographies constitute a
major potential source of data for computational literary studies, but only if their digitization in
a useful format can be made technically and economically feasible for interested researchers. To
this end, the project seeks to benchmark traditional OCR and multimodal LLM text transcription of
idiosyncratically formatted text and its conversion to JSON format in the resource-constrained and
pedagogically motivated context of a small liberal arts college.
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1 Introduction

Published bibliographies are a crucial tool for assembling relevant and well-documented corpora for
specific areas of literary inquiry. Widespread efforts to digitize books in general have not resulted in
masses of bibliographic datasets because simple digitization is not enough to make these data truly usable.
Bibliographies need to be transformed into structured data to allow querying and visualization. Because
most bibliographies are by definition a niche resource, aimed at more or less exhaustive representation
of a small range of texts, unlocking the data potential of print bibliographies may depend on developing
workflows that are feasible for small research teams with limited labor, time, and money.

Multimodal LLMs (mLLMs) may have made this pipeline more achievable. With the ability to re-
ceive image as well as text input, mLLMs have shown promise in both OCR and OCR post-correction
tasks, and they are capable both of turning transcriptions into structured data and generating structured
data directly from images. Before humanities researchers engage these tools for data creation widely,
though, it should be determined whether the speed, accuracy, and cost are superior to traditional OCR.
The goal of this project is to document the creation of a pipeline for the digitization of print bibliogra-
phies as structured data usable by a small research team at an undergraduate institution and benchmark
its performance compared to traditional OCR. This work-in-progress report shares early findings from
benchmarking experiments for OCR and JSON accuracy across Tesseract, OpenAl, and Gemini models. '

2 Related Work

The goal of digitizing a print bibliography as structured data brings together the tasks of OCR transcrip-
tion for historical research purposes and the parsing of transcribed text as structured data.

Reference extraction typically takes a PDF as input for two subtasks: identification of references
as distinct from article text and parsing of reference text into structured format. In their review article,
Backes et. al provide an overview of freely available approaches and tools for reference extraction,
including EXparser, Grobid,Cermine, and AnyStyle. Due to the recency of mLLM approaches, they do
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not have review results for mLLMs [1]. They find that traditional methods are reportedly effective, but
most tools developed for this purpose lack open and well-maintained code.

OCR and information extraction for humanities research using mLLMs is a recent and rapidly ex-
panding area of inquiry with many open questions surrounding performance, prompt optimization, and
cost. The relative recency of mLLM availability also means that tools studied and capabilities demon-
strated are shifting rapidly. Shi et al. studied Gpt-4Vision for a variety of OCR-related tasks included
information extraction and found that performed general basic transcription well for Latin alphabet texts
but struggled with multilingual contexts and visual parsing of documents for structured information ex-
traction [9]. Liu et al. find that Gemini (model unspecified, presumably 1.0) and Gpt-4Vision outperform
other approaches for structured information extraction on documents from a variety of domains, but they
also note that the reasons why these models can perform OCR tasks well remain unclear and therefore
difficult to finetune [8].

More recent work on tasks similar to the goals of this project have consistently demonstrated promis-
ing results for generally trained mLLMs on structured information extraction from page images in a
variety of fonts for Latin alphabets. Ghiriti et al. examined Gpt-4Vision for OCR of an early twentieth-
century German magazine and found that the mLLM outperformed traditional OCR in general, but on
pages with minimal degradation and alignment issues also showed poor results [3]. Kanerva et al. cau-
tion that languages other than English may see far worse outcomes [5]. Kim et al. evaluate mLLM
transcription with Gpt-4o0 and Claude Sonnet 3.5 for handwritten texts in a tabular format and Greif et al.
(2025) evaluate Gpt-4o and Gemini 2.0 for transcription of directory data in a historical font [4; 7]. Both
studies compare mLLM results with that of traditional OCR workflows and find that mLLMs are supe-
rior when used with well-devised prompts. Bauder and Jones explored the potential for using mLLMs
to perform end-to-end the process of transcribing, structuring, locating full text for, and downloading
full text for works in a set of nineteenth-century private library catalogs [2]. They found that mL.LMs
provided fast and highly accurate structured data transcription but generally trained models could not
offer much assistance in corpus assemblage due to limited and inconsistent ability to query the web.

This project contributes to this area of inquiry by further benchmarking LLM performance for struc-
tured data transcription for standardized contemporary font with idiosyncratic layout and providing a
notebook pipeline using API calls to facilitate bulk processing.

3 Data

Our test case for this pipeline is Louis Kaplan’s Bibliography of American Autobiography (1961) [6]. In
addition to publication metadata, Kaplan provides a brief subject description and a subject index, where
all works related to a range of themes and identities groups (such as “Physicians™) are listed by index
number (not page number). Some of indexed topics have hundreds of relevant entries, a potential gold
mine for a researcher looking to get beyond widely cited texts and develop a much larger corpus.

All print bibliographies will share some common features in layout: they will consist of discrete
entries in which the order of information is significant for determining meaning. Several format id-
iosyncrasies make Kaplan challenging to transform into structured data, either manually or digitally.
Transcribing hundreds of relevant entries for a particular topic is made very laborious by the need to
determine what page each index number is on. Assuming a researcher has access to a scanner and a
high-quality OCR tool, the two-column format means that each page may still need a substantial amount
pre-processing or post-correction just for legibility. Traditional OCR would also leave the step of parsing
the text into a structured format, which is made difficult by the bespoke citation format that does not use
consistent field delimiters and allows omitted fields. While these are the specific challenges presented
by Kaplan, a review of other print bibliographies such as Wright’s American Fiction, 1774-1850 [11]
and Watson et al.’s The New Cambridge Bibliography of English Literature [10] indicates that most if
not all print bibliographies will have their own set of idiosyncrasies. A pipeline for transcribing Kaplan
may not be generalizable in specifics, but it will be useful in modeling approaches to dealing with such
idiosyncrasies.
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As a test set, 43 pages of Kaplan were scanned as tiffs using an EPSON 10000XL flatbed scanner at
300dpi in full color setting.

4 Method
4.1 OCR Creation

We transformed tiffs to pngs and performed OCR using pytesseract, a Python wrapper for Google’s
Tesseract OCR engine. Tesseract was selected because it is a popular, free, and well-documented tool.
We used the default configuration to establish a standard baseline, representing typical OCR implemen-
tation without fine-tuning. Our resulting plain text output preserved all formatting and text detection
errors inherent in traditional OCR processing, including the challenges associated with the two-column
layout and marginalia present in the data.

We created additional OCR text files using the mLLMs to generate text directly from an image and,
in a separate pass, to correct the corresponding pytesseract file with the alongside, also known as post-
correction. These post-correction pages were then manually reviewed and corrected to create textual
ground truth.

4.2 OCR Accuracy Metrics

We use character error rate (CER), word error rate (WER), and token sort ratio (TSR) to calculate accu-
racy. The CER is equal to the Levenshtein distance divided by the character count of the ground truth.
The Levenshtein distance is defined as the sum of the number of characters inserted, deleted, and substi-
tuted to transform the transcription to the ground truth. Likewise, the WER is the sum of the number of
words inserted, deleted, and substituted divided by the total number of words in the ground truth. The
TSR is a metric which measures similarity between the ground truth and transcription without respect to
ordering.

We report accuracy metrics for both non-normalized and normalized results. For non-normalized
results, pre-processing includes (i) replacing line breaks and tabs with spaces, (ii) removing all instances
of hyphens followed by spaces, except for numeric intervals where hyphens remain, (iii) replacing mul-
tiple spaces with one space, and (iv) removing leading and trailing spaces. These methods will reduce
the differences inherent between OCR software and LLMs as well as small differences in transcription
that do not affect how the data is understood and may have arisen from human discernment or error when
creating the ground truth.

4.3 JSON Creation

To create usable structured JSON output using mLLMs, we needed a way to enforce the structure of the
output for benchmarking comparison as well as usability for future database construction. Some mLLMs
have built-in features for defining strict guidelines for structured output. For cross-model compatibil-
ity, we used a structured output solution called Instructor, a third-party tool for creating and validating
structured output from a variety of mLLM providers. We were able to use a single JSON schema for
every model, provided in A. Strings have the default value of the empty string (*”) and integers have the
default value of 0. Because each entry in the original text can exclude any of the fields, a unified way to
handle nonexistent information was an important consideration. Almost every entry is missing at least
one of the fields (most commonly the maiden name). Assuring the mLLM that it is acceptable for an
entry to be missing information and providing guidance of what value to assign to those fields is another
way to discourage hallucinations. For cut-off entries at the start or end of pages, whichever information
is present on that page is included as its own entry. Ground truth was created by running the mLLM
JSON creation process on each page, and then manually correcting it by referencing the original scanned
image of the page.
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4.4 JSON Accuracy

JSON accuracy consists of opening the JSON output as tabular data and reporting the number of matching
cells out of all cells. We use three metrics to calculate whether two corresponding cells match. First, the
exact match compares whether two cells match exactly after alignment pre-processing is done. Next,
the normalized match compares whether two cells match exactly after only alphanumeric, underscore,
and whitespace characters are kept and multiple spaces are replaced with single spaces for text cells.
Finally, the fuzzy match uses RapidFuzz’s Jaro-Winkler algorithm with a match threshold of 0.9 on the
non-normalized data.

4.5 Pipeline Architecture

Our processing pipeline builds upon Grief et al.’s Python scripts, adapted to meet our requirements for
bibliographic data. Our pipeline starts with PNG images of pages and converts these into two output
formats: plain text and structured JSON.

The pipeline processes each page through five distinct methods.? Each method (excluding raw OCR)
is executed through both Gpt-40 and Gemini-2.5-Flash, which results in 9 total outputs per page per
experimental run.

1. Workflow 1 (3 steps):
* Raw OCR extraction (output in plain text): Pages are processed through pytesseract to gen-
erate raw OCR text - without mLLM intervention.

* OCR post-correction (output in plain text): Raw OCR text and the original PNG are both fed
into the mLLM with the OCR output clearly labelled in the prompt.

* JSON from corrected text (output in JSON): OCR post-corrected text is used as input to
generate structured JSON output.

2. Workflow 2 (1 step):

* Direct image transcription (output in plain text): The original PNG is processed by the
mLLM.

3. Workflow 3 (1 step):

* Direct JSON from image (output in JSON): The original PNG is processed directly to produce
structured JSON data.

2 Given that our workflow involved processing each image through 5 methods with two mLLMs per method in addition to
the raw OCR processing step, we were dealing with a significant amount of time dedicated to a single pipeline run with an
estimated 30-45 seconds per mLLM API call. To address this, we implemented asynchronous API calls with rate-limiting for
all mLLM-related tasks. This optimization reduced processing time by approximately 70 percent for each pipeline execution
allowing us to address other issues in the development process and making large-scale benchmarking a feasible goal.
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Figure 1: Text processing pipeline

4.6 Model Selection

Our selection criteria was two-fold. First, we needed to ensure computational efficiency for large-scale
processing which required us to use models capable of handling substantial document volumes without
compromising on compute and time-related limitations. Secondly, we sought state-of-the-art multimodal
capabilities to minimize potential bottlenecks during correction to ensure that models could effectively
utilize both visual and textual data sources.

Based on these requirements, we selected Gpt-4o (OpenAl) and Gemini-2.5-Flash (Google) to pro-
cess the images and correct our OCR output. Both models had sufficient context windows for lengthy
bibliographic entries and supported asynchronous processing which proved to significantly reduce the
time it took to run our benchmarks. They also supported structured JSON output through the instructor
library, a key component in one of our benchmarks.
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4.7 Prompt Engineering

Prior researchers stress the importance of careful prompt engineering in their paper. Initial prompt test-
ing was done with the AI Studio version of Gemini 2.5 Pro (temperature = 0). Gemini 2.5 Pro required
minimum prompting to behave how we wanted it, with very few noticeable errors. The only extra in-
structions were to put the index numbers at the end of entries, put each entry on a separate line, and to
not make up information that did not appear on the page.

Unfortunately, the API access to this model was not free, so we reverted to Gemini 2.5 Flash for the
rest of our testing. While continuing to test, we noticed that on pages with handwritten text the mLLM
was able to transcribe those notes as well, so the line ”Ignore handwritten marginalia when transcribing”
was added to the end. The mLLM would sometimes avoid transcribing the headings and page numbers,
possibly because they were not “entries.” Therefore, ”Transcribe all text that appears on the page” was
added within the prompt. Next, testing needed to be expanded to include GPT-40 as well. Unexpectedly,
GPT-40 did not respond well to some aspects of the prompt that improved the behavior in Gemini.
Asking the API to provide the output in a txt file occasionally caused it to insist that it did not have
this functionality. The line about handwritten marginalia caused it to sometimes add a message at the
top that it could only transcribe typed text. At this point, we combined aspects of our current prompt
with a prompt that GPT-4o had responded well to, in hopes of creating a prompt that was acceptable to
both models. The biggest change was providing the model a “role” to play, which we can hypothesize
reduced direct messages to the user being inserted at the beginning of output because a “text correction
assistant” would not need to speak to a user. The role also provides a justification for transcribing a book
which reduced refusals of the task. Finally, a separate prompt was created for the direct-from-image
transcription. Prompts are included in Appendix B.

To fully maximize the behavior of either model, separate prompts would be used that tailor to their
differences, but in order to fairly benchmark their performance compared to one another a universal
prompt was needed.

5 Results

Gpt-4o consistently outperformed Gemini 2.5 Flash for unstructured OCR accuracy, with all differences
except for token sort ratio between the two mLLMs statistically significant at the p<.05 level. Both
mLLMs outperformed Pytesseract significantly. Two considerations, however, are that we used a paid
version of Gpt-4o in order to have API access and that the prompt we ended up using for both models may
have slightly favored Gpt-4o due to it being more likely to refuse tasks, leading us to tailor the prompt
to avoid them. The cost of using the paid model for the 5822 pages sent in the course of developing and
then running experiments using the pipeline totaled USD 35.41, or a little more than half a cent per page.
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Method Text Processing Metric gemini-2.5-flash gpt-40 pytesseract

CER (%) 5.39 2.40 9.94

Not normalized TSR (%) 98.63  98.60 97.02

WER (%) 8.67 4.68 15.54

LLM trans. CER (%) 426 1.88 7.72
Normalized TSR (%) 99.30 99.20 98.11

WER (%) 522 234 11.39

CER (%) 521  1.74 9.94

Not normalized TSR (%) 98.47  98.65 97.02

WER (%) 7.52 3.99 15.54

LLM OCR post-corr. CER (%) 403 1.38 7.72
Normalized TSR 99.14  99.27 98.11

WER (%) 5.14 1.41 11.39

Table 1: Transcription accuracy overview by method and model.

Aggregate metrics (normalized, image transcription)
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Figure 2: Aggregate metrics for normalized text, transcribed from image

For JSON creation directly from images, however, Gemini 2.5 Flash consistently outperformed Gpt-
40, with a 94 percent fuzzy match rate. Gemini also performed slightly better creating JSON from images
than from text. There was not a statistically significant difference between the models for JSON creation
from post-corrected text. We were able to use the Gemini 2.5 Flash API at no cost during this experiment;
however, we began to hit rate limits when we attempted multiple runs of the entire experiment in one
day.

Much analysis remains to be done on error patterns in the JSON and their effect on data usability,
but as a preliminary overview we examined the granular match rates for each field. The lowest match
rates were for the ”library” field, for which values are drawn from a set of abbreviations specific to this
work, likely making them more of a challenge for the model to predict (see Figure 3 and Figure 4).
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Method Text Processing ~ Metric gemini-2.5-flash gpt-4o

Fuzzy matching Matches (%) 94.24  86.78

Image to JSON Not normalized Matches (%) 89.48  80.77
Normalized Matches (%) 93.46  85.40

Fuzzy matching Matches (%) 92.34 88.91

Post-corrected text to JSON Not normalized Matches (%) 88.41 84.02
Normalized Matches (%) 91.77  88.26

Table 2: JSON accuracy overview by method and model.
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Figure 3: Field error rates for image to JSON transcription
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Figure 4: Field error rates for OCR post-corrected text to JSON transcription

Two broad categories of error that are already noticeable in the text to JSON process are incomplete
entries due to page splits, incomplete entries due to the model either skipping text or not recognizing that
text should belong to a field (see Figure 5).
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., 1914. 65 p. DLC. Baptist clergy-man and educator in South Carolina
Craine, Jeremiah V., d. 1855. The conspirators' victims... Sacramento: 1855. p. C. Murderer. [1306]
Cram, Ralph Adams, b. 1863. My life in architecture. Boston: Little, Brown 325 p. WU. Architect.
Crane, Charles Judson. The experience of a colonel of infantry. N.Y.: The Kni er press, 1923. 57
who left West Point in 1872. His services in the War with Spain are also related. [1308]
Crane, George B., b. 1806. A life history...San Jose: Mercury print, 1886. 243 p. CLU. Physician in New
1882. [1309]

> results1 > json > lIm-txt2json % gemini-2.5-flash > {} kbaa-p069.json > ...

{

"entries": [

"lastname":

"firstname": "Th

"publisher": "co.",

"publishyear": 1914,

"pagecount"”: 65,

"library": "DLC",

"description": "Baptist clergyman and educator in South Carolina."

>

2 > results1 > json > lim-txt2jsor > gpt-4o0 > {} kbaa-p069.json > [ ]entries > {} 3

{

"entries": [

"lastname"”:
"firstname
"description": "Baptist clergyman and educator in South Carolina."

>

Figure 5: A: Both models misinterpreted the page heading as the name of the author due to the first
entry continuing from the previous page. B: Since the name of the publisher is cut off on the original
page this publisher field, while strange, is correct.

6 Next Steps and Open Questions

Our experiment was focused on answering questions about the overall feasibility of this approach, as
opposed to perfecting the process. Our images were intentionally scanned at high resolutions and were
usually just under 15MB, which would require additional processing to be usable with Claude, which
sets a 5SMB upper limit for image upload. Scanning the images in black and white and scanning at a lower
resolution may be a possible way to decrease the number of tokens required to resolve requests, but more
testing would be required to see if there is a tradeoff where lower resolutions eventually produce worse
outcomes.

The biggest issue to resolve before this pipeline would be ready for production use would be to
address entries split between pages. For a structured dataset of the entire text to be “complete,” a method
of combining cut-off entries from the beginning and ends of adjacent pages would need to be devised.

Ultimately, we want to be able to use the transcribed JSON object to populate a database for query
and visualization. We are currently exploring the use of a model context protocol (MCP) architecture for
a streamlined, low/no-code environment for structured data extraction, database creation, and query.
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A Entry Schema Using Instructor

class Entry(BaseModel):

lastname: str = Field(default="", description="The authors$ last name. In the original entries, names
are written in Last Name, First Name format. If the name is followed by (pseud.), this indicates that the
name is a pseudonym, but it should still be stored in this field. If this information is not found, assign
the empty string to this field.”,)

firstname: str = Field(default="", description="The authors first name(s). In the original entries,
names are written in Last Name, First Name format. If this information is not found, assign the empty
string to this field.”,)

maidenname: str = Field(default="", description="The author§ maiden name. If they have one, it
will be found in parentheses after the rest of the name. If this information is not found, assign the empty
string to this field.”,)

birthyear: int = Field(default=0, description="The year the author was born. In the original en-
tries, it will be written either as b.YEAR or YEAR-YEAR where the first year is the birth year. If this
information is not found, assign 0 to this field.”,)
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deathyear: int = Field(default=0, description="The year the author died. In the original entries, it
will be written as YEAR-YEAR where the second year is the death year. If this information is not found,
assign 0 to this field.”,)

title: str = Field(default="", description="The title of the book. In the original entries, it should
appear after the author’s name and birth/death dates. If this information is not found, assign the empty
string to this field.”,)

city: str = Field(default="", description="The city the book was published in. In the original
entries, it is often followed by a colon. It may occasionally take the format CITY, STATE. It is acceptable
to include the state in this field. In entries that include the words No imprint; this information is often
unavailable. If this information is not found, assign the empty string to this field.”,)

publisher: str = Field(default="", description="The name of the publisher which published the
book. In the original entries, it often follows a colon. In entries that include the words No imprint; this
information is often unavailable. If this information is not found, assign the empty string to this field.”,)

publishyear: int = Field(default=0,description="The year the book was published. Usually sepa-
rated from the name of the publisher by a comma, although occasionally a period was used instead. In
entries that include the words No imprint; this information is often unavailable. If this information is not
found, assign 0 to this field.”,)

pagecount: int = Field(default=0, description="The number of pages in the book. Found in the
format NUMBER p. If this information is not found, assign O to this field.”,)

library: str = Field(default="", description="The abbreviated name of the library that the book was
found in. In the original entries, this information is found after the page count. If this information is not
found, assign the empty string to this field.”,)

description: str = Field(default="", description="A description of the book, or the author$ occu-
pation. After the library field, the description consists of whatever is left of the entry (unless the index
number is treated as occurring at the end of the entry). In entries where the author uses a pseudonym,
the information after (pseud.)should be included in this field. If this information is not found, assign the
empty string to this field.”,)

index: int = Field(default=0, description="The index number of the bibliography entry. In the
original entries, this information is enclosed in square brackets. Entries that redirect elsewhere due to
the author using a pseudonym do not have an index number. If this information is not found, assign 0 to
this field.”,)

# Container so that multiple entries are contained in a single JSON object
class Entries(BaseModel):
entries: List[Entry]

B Prompt Engineering
B.1 Initial prompt

Please correct the Tesseract transcription of this bibliography page using the scanned image of the page
and provide the output in a txt file. Where index numbers in square brackets appear, they should be
moved to the end of the entry. Put each entry on a separate line. Only transcribe text that appears on the
page and do not attempt to predict missing information or complete cut off entries.

B.2 Improved prompt

You are a text correction assistant. Your task is to clean up and correct errors from raw OCR output.
The text may contain misrecognized characters, broken words, or incorrect formatting. Carefully read
the provided OCR output, compare it to the original image, and produce a corrected version that is as
faithful to the original content as possible. Only correct obvious OCR errors, and do not attempt to
complete cut-off entries or predict missing information. Put each entry on a separate line. When an entry
has an index number in square brackets, place it at the end of the entry. Input (Raw OCR Text):
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B.3 Direct from image prompt

Your task is to transcribe this image of a historical bibliography page as faithfully as possible. Only tran-
scribe typed text that appears on the page and do not attempt to predict missing information or complete

cut off entries. Put each entry on a separate line. When an entry has an index number in square brackets,
place it at the end of the entry.
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