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Abstract

This study evaluates the capabilities of multimodal large language models (LLMs) in the task
of single-label classification of Christian iconography, focusing on their performance in zero-
shot and few-shot settings across curated datasets. The goal was to assess whether general-
purpose models, such as GPT-4o0 and Gemini 2.5, can interpret the Iconography, typically
addressed by supervised classifiers, and evaluate their performance. Two research questions
guided the analysis: (RQ1) How do multimodal LLMs perform on image classification of
Christian saints? And (RQ2), how does performance vary when enriching input with contex-
tual information or few-shot exemplars?

We conducted a benchmarking study using three datasets supporting Iconclass natively:
ArtDL, ICONCLASS, and Wikidata, filtered to include the top 10 most frequent classes. Mod-
els were tested under three conditions: (1) classification using class labels, (2) classification
with Iconclass descriptions, and (3) few-shot learning with five exemplars. Results were com-
pared against ResNet50 baselines fine-tuned on the same datasets.

The findings show that Gemini-2.5 Pro and GPT-4o outperformed the ResNet50 baselines
across the three configurations reaching peaks of 90.45% and 88.20% in ArtDL, respectively.
Accuracy dropped significantly on the Wikidata dataset, suggesting model sensitivity to image
size and metadata alignment. Enriching prompts with class descriptions generally improved
zero-shot performance, while few-shot learning produced lower results, with only occasional
and minimal increments in accuracy.

We conclude that general-purpose multimodal LLMs are capable of classification in
visually complex cultural heritage domains, even without specific fine-tuning. However,
their performance is influenced by dataset consistency and the design of the prompts. These
results support the application of LLMs as metadata curation tools in digital humanities
workflows, suggesting future research on prompt optimization and the expansion of the study
to other classification strategies and models.
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1 Introduction

For over two decades, the GLAM sector (galleries, libraries, archives, and museums) has under-
gone an extensive mass digitization process, resulting in a vast amount of digital archives contain-
ing a diverse array of artworks, photographs, and documents [9]. This rapid growth is transforming
the analogical Cultural Heritage into a body of machine-readable knowledge, defining a critical

Gianmarco Spinaci, Lukas Klic, and Giovanni Colavizza. “Benchmarking Multimodal Large Language Models in Zero-
shot and Few-shot Scenarios: Preliminary Results on Studying Christian Iconography .” In: Computational Humanities
Research 2025, ed. by Taylor Arnold, Margherita Fantoli, and Ruben Ros. Vol. 3. Anthology of Computers and the
Humanities. 2025, 1165-1177. https://doi.org/10.63744/0xWtm5MhhwBH.

1165


https://orcid.org/0000-0002-3504-3241
https://orcid.org/0000-0002-9620-7107
https://orcid.org/0000-0002-9806-084X
https://doi.org/10.63744/oxWtm5MhhwBH
https://creativecommons.org/licenses/by/4.0

mass of images and their metadata and serving as input to research in Artificial Intelligence (AI)
and Computer Vision [20].

Computer Vision is a part of Al and Computer Science that enables computers to analyze,
interpret, and make decisions based on image characteristics. At its core, it extracts and analyzes
visual patterns, with applications that span the fields of medicine, robotics, and cultural heritage
[3; 4], with main tasks that include image classification [5; 11; 32], object detection [8; 10], and
semantic segmentation [17]. Among these, image classification stands out for its applicability
to the semantically and visually complex objects in the Cultural Heritage field. For this task,
the previously mentioned datasets are well-suited for image classification, as they also contain
metadata, usually created by domain experts, that describes the general content of the images.

An influential area of study supported with Image classification is Iconography, being that
”branch of the history of art which concerns itself with the subject matter or meaning of works
of art, as opposed to their form” [22]. Iconography helps to understand the representations and
themes expressed in images by identifying symbols, subjects, and motifs in paintings. Iconclass
[6] is a formal tool that can be utilized to support this area of study, offering a thesaurus that cata-
logs subjects and objects in artworks, including elements of historical, religious, and architectural
significance. Thanks to this tool, image classification can be used to understand the overarching
theme represented in an artwork, beyond surface-level object detection, without focusing on indi-
vidual elements. Iconclass has been adopted as the backbone of several datasets, including ArtDL
[19] and the Iconclass Al Test Set [23]. Another important dataset is ICONGRAPH [27], which
includes metadata for images from Wikidata and ArCo [2], modeled after the ICON Ontology [28],
expanding the granularity to the context of Iconology [22], and allowing cross-analyses of images
based on the themes they represent.

These datasets have become more significant and widely utilized due to the substantial surge
in the field of Computer Vision, where technical advancements enabled the use of Convolutional
Neural Networks (CNNs) [21] and, more recently architectures centered on Vision Transformers
(ViTs) [7], enabling models to capture global dependencies in images rather than focusing on local
features. To this family belong CLIP [25] and SigLIP [33]. They both align images and text in
a shared embedding space through contrastive learning, excelling in zero-shot image classifica-
tion. Beyond this, ViTs support multimodal Large Language Models (LLMs), including OpenAl
GPT [24], Google Gemini [31], Claude [1], LLaVa [16], and Mistral [12]. General-purpose sys-
tems capable of interpreting texts and images together, connecting complex visual and linguistic
information. These models can be directly interfaced with full-text queries and analyze pictures,
pushing the boundaries of automatic study as they can be adapted to a wide range of tasks without
requiring retraining from scratch.

Over the last few years, several initiatives have been launched to leverage multimodal models
and achieve state-of-the-art results in image classification on datasets such as Iconclass, that has
been subject to several studies [14; 26; 29]. Another example is fine-grained food image recog-
nition through vision-language models [13], leveraging CLIP and image descriptions generated
with MiniGPT-4 over data from two different datasets. Another study explores the use of off-the-
shelf multimodal models, including CLIP, SigLIP, and BLIP-2 [15], in a zero-shot environment for
classifying historical photographs in the Estonian Ajapaik archive [18]. The authors found these
models to be underperforming in comparison to a fine-tuned supervised baseline for ambiguous or
culturally specific categories, such as “viewpoint elevation”. For the case of image classification
of Christian saints, the literature contains applications of CNNs to classify Christian iconography
in artworks. For Example, in the paper introducing ArtDL [19], the authors trained a ResNet50
model, achieving an accuracy of 84.44% in identifying the depicted saints.

These experiments demonstrate a growing interest in using multimodal models for general-
purpose image classification tasks. Many advancements in the state-of-the-art have been achieved
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by implementing these models, and most importantly, by enhancing the accuracy scores of these
models through the addition of meaningful context to the prompts [13]. Despite this interest, the
literature has not yet benchmarked LLMs specifically for classification in Christian iconography.
This gap in the literature highlights the novelty of our preliminary investigation, which aims to
address the following research questions: (RQ1) How do LLMs perform on the classification of
Christian saints? (RQ2) How do the results change with the progressive enrichment of contextual
data, such as adding more descriptive data or tagged exemplars?

2 Methodology

In this analysis, we designed a study to evaluate the classification performance of diverse LLM
models on Christian Iconography. Specifically, we aimed to (RQ1) compare different LLM ver-
sions in image classification and (RQ2) assess the impact of progressively enriching the input data
with descriptions and few-shot exemplars. This section outlines the procedure design, including
dataset preparation, model selection, and the benchmarking.

2.1 Datasets

We investigated the images belonging to three collections, which we selected for their native sup-
port of Iconclass classes. One is ArtDL [19] and the other two are subsets of the ICONCLASS Test
Al set [23] and Wikidata, of which we only include images representing the top ten most frequent
classes of Christian Saints.

2.1.1 ArtDL

The ArtDL dataset comprises over 42,000 images of Christian religious paintings. Each image
is annotated with Iconclass codes, covering 10 key figures of Christian iconography, such as the
Virgin Mary, Saint Francis of Assisi, and Saint Sebastian. The test set, published along with the
paper, contains 1,864 images. Each is mapped to a single iconographic label and serves as the
starting point for our classification experiments presented in this study.

2.1.2 ICONCLASS AI Test Set

The ICONCLASS [23] dataset originates from the official AI Test Set. The original collection com-
prises approximately 87,500 images representing a wide range of iconographic subjects. For this
study, we conducted a filtering and curation process explicitly tailored to the single-label classifi-
cation of Christian saints. Our refinement began by selecting all images annotated with Iconclass
codes, starting with ”11F” (The Virgin Mary), ”11H” (male saints), and *11HH” (female saints).
We then performed a frequency analysis to identify the 10 most common saint classes. We applied
systematic controls by removing all images with multiple saints, resulting in a dataset comprising
863 images.

2.1.3 Wikidata

To expand our benchmark beyond curated archives, we compiled a dataset of religious artworks
using the Wikidata SPARQL endpoint. We designed a SPARQL query to detect paintings' with a
valid image URL and associated with Iconclass codes representing Christian saints and the Virgin
Mary (using the same codes as the ICONCLASS dataset). After filtering out multi-label entries,
failed downloads, and duplicates, we retained 718 images of paintings. Images were retrieved in
their original size, preserving native aspect ratios.

! In Wikidata are instances of type “wd:Q3305213”
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2.1.4 Cross-Dataset Similarity Analysis

To assess dataset independence and uncover overlaps that could bias evaluation results, we con-
ducted a cross-dataset similarity analysis using a robust block-based image hashing method in-
spired by digital image forensics [30]. This approach identifies near-duplicate images across
datasets, even those that have been transformed, such as cropping or mirroring. This method is
particularly suitable for comparing art datasets, where visual duplicates may originate from differ-
ent digitization pipelines or cataloging standards, resulting in varying representations of the same
artwork. We defined a duplicate as any pair of images across datasets with a Hamming distance
of 8 or less, identifying 36 cross-dataset duplicate pairs using the robust hash, primarily between
ArtDL and Wikidata (Figure 1).

2.2 Models

The study compares multimodal LL.Ms to highlight the differences in paradigms when processing
single-labeled images of paintings depicting Christian Saints. The inclusion of these models re-
flects differences in the scale of parameters, input resolution, and the processing and presentation
of visual and textual information.

We assess unified multimodal models, such as OpenAl GPT-4o (snapshot 2024-08-06), Google
Gemini 2.5 Pro (preview-05-0) classification smaller counterparts GPT-4o-mini (snapshot 2024-
07-18) and Gemini 2.5 Flash (preview-05-20). Flash and Mini are lightweight versions designed
for efficiency and reduced cost while maintaining core multimodal capabilities. These models inte-
grate both modalities into a single processing stream, enabling image understanding and contextual
visual reasoning through prompt-based classification with natural language. They are particularly
effective for visual studies, description generation, and interpretive tasks that require deeper se-
mantic integration across modalities.

2.3 Benchmarking design

For building the benchmarking, we employed three distinct test configurations applied across mod-
els and datasets. This framework assesses model performance under varying conditions of knowl-
edge availability.

Test 1 is a zero-shot classification task with labeled names. The models classify images using only
class label names (e.g., ”St. Paul” or ”"Mary Magdalene”) without additional contextual informa-
tion. This configuration tests the model’s ability to leverage pre-trained knowledge connections
between visual features and semantic concepts.

Test 2 is a zero-shot classification task with label descriptions. The Models receive detailed icono-
graphic descriptions for each class, retrieved from Iconclass descriptions (e.g., ”The penitent harlot
Mary Magdalene; possible attributes: book (or scroll), crown ...”). This approach evaluates how
effectively models can utilize rich textual descriptions to guide visual classification.

Test 3 is a few-shot Learning classification task. During inference, LLMs are provided with an
arbitrary number of five example images, along with their corresponding class labels. The im-
ages have been chosen to represent the five among the less performing classes from the first test.
This configuration assesses the models’ capacity for rapid adaptation and in-context learning from
limited examples.

2.3.1 Technical implementation

The benchmarking pipeline consists of a set of Python scripts available on the GitHub repository?,
along with documentation that describes the detailed implementation points.

2 https://github.com/llm-art/ai-recognize-saints
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Dataset: wikidata

: Q10744
Dataset: ICONCLASS Filename: Q107443479

Filename: IIHIM_-1578407314

Dataset: wikidata
Dataset: ArtDL. Filename: Q510799

Filename: Q510799

Dataset: ArtDL
Filename: 258398

Dataset: wikidata
Filename: Q19820268

Figure 1: Example of image pairs deemed as similar (Hamming distance less than or equal to 8)

GPT-40 was accessed through the OpenAl APIs and configured to behave deterministically
with a temperature value of 0 and an arbitrary seed of 12345, and forced to produce a JSON out-
put. The evaluation batches contained five images, which have been proven to be less error-prone
and more cost-effective than other configurations. Prompts followed a fixed-based template and
dynamically included the list of class names or descriptions as candidate options>. These outputs
were parsed using a structured JSON extraction routine, with fallbacks for occasional formatting
anomalies.

Similarly, Gemini 2.5 was tested using the Google AI Python SDK for the Gemini API. Like-

% An example of prompt can be found on the GitHub repository linked above
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wise to GPT models, the temperature was set to 0, and the prompt was dynamically created by
adding the list of candidate classes. These models have been configured with all safety categories
(e.g., violent content, sexually explicit) set to BLOCK NONE, ensuring that religious artworks are
not automatically filtered out or rejected if they contain commonly found religious themes, such
as nudity or martyrdom.

These closed-source models are accessed via API endpoints and have transparency limitations
in their training data, internal representations, and filtering mechanisms, of which we only know
external hyperparameters such as tokens and context windows. To mitigate output variance and en-
sure consistency in classification, LLMs were configured to operate in a near-deterministic mode,
exploiting specific hyperparameter values. While this reduces stochastic variation, it does not
eliminate the nondeterminism of LLMs.

3 Results

This section presents the preliminary results of the benchmarking experiments, which are struc-
tured to assess the classification performance of the models for each test in a progressive manner.
We begin by establishing a supervised baseline. To ensure the reliability of our evaluation, we
then include a cross-dataset analysis, which serves as a consistency check and measures whether
models consistently assign stable predictions to similar images across the datasets. We then re-
port overall accuracy scores across all models, datasets, and test configurations for a fine-grained
benchmarking on iconographic classification.

3.1 Baseline

To evaluate the models’ performances, we established a baseline based on supervised CNNs using
ResNet50 architecture following the same methodology from the ArtDL paper [19]. We lever-
aged two models, which were explicitly fine-tuned on an 80% split of the images detected for the
ICONCLASS and Wikidata datasets, respectively. The remaining 20% has been used for testing.
On ICONCLASS, this approach achieved an accuracy of 40.46%, while on Wikidata, it reached
an accuracy of 43.97%. Please refer to Appendix A for technical implementations and hyperpa-
rameters.

3.2 Cross-dataset consistency

We evaluate the robustness of model predictions by conducting a cross-dataset consistency analysis
across 36 matched image pairs in the three test scenarios. The goal was to measure the percentage
of image pairs for which both images received identical model predictions. The results are shown in
Table 1. The models demonstrated low consistency and greater sensitivity to the test configuration,
particularly in terms of image sizes. GPT-4o ranged from 25.00% in the first test to 27.78% in
the second and third tests. GPT-40-mini had slightly lower overall scores but followed a similar
trend. Gemini-2.5-Flash achieved consistency between 30.56% and 33.33%, while Gemini-2.5-
Pro maintained a stable performance of 33.33% across all tests, resulting in being the one with
overall higher consistency.

3.3 Classification performances

The classification performances are summarized in the following tables, showcasing the model’s
accuracy for the three tests: (1) is Zero-Shot with only labels, (2) is a Zero-Shot setting with
Iconclass descriptions, and (3) is a Few-Shot approach with labels.

ArtDL Performances (Table 2) resulted similarly across models and configurations, ranging
from 82.46% for GPT-40-mini in Test 1 to a peak of 90.45% achieved by Gemini-2.5 Pro. These
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Model Test 1 Test 2 Test 3  Avg. Consistency

gpt-40-2024-08-06 25.00% 27.78% 27.78% 26.85%
gpt-40-mini-2024-07-18 22.22% 30.56%  25.00% 25.93%
gemini-2.5-flash-preview-05-20  30.56% 30.56% 33.33% 31.48%
gemini-2.5-pro-preview-05-06  33.33% 33.33% 33.33% 33.33%

Table 1: Consistency results across three tests for selected models, with the highest values in bold.

models outperformed the baseline in almost all configurations. The baseline model achieved an
accuracy of 84.44%.

Model Test 1 Test 2 Test 3
gpt-40-2024-08-06 86.00% 87.45% 86.48%
gpt-40-mini-2024-07-18 82.46% 84.98% 84.60%

gemini-2.5-flash-preview-05-20 88.20% 87.02% 84.71%
gemini-2.5-pro-preview-05-06  90.45% 90.18% 86.59%
Baseline 84.44% 84.44% 84.44%

Table 2: Accuracy scores across three tests for ArtDL dataset

For the ICONCLASS dataset (Table 3), Gemini-2.5 Pro achieved the highest performance,
with accuracy scores of 83.31%, 84.59%, and 84.82% across the three evaluation settings. GPT-
4o showed stable performance across the settings. The baseline, fine-tuned on the ICONCLASS
dataset, achieved an accuracy of 40.46%.

Model Test 1 Test 2 Test 3
gpt-40-2024-08-06 75.32% 75.43% 73.46%
gpt-40-mini-2024-07-18 55.74% 59.56% 55.50%

gemini-2.5-flash-preview-05-20 77.17% 77.75% 78.22%
gemini-2.5-pro-preview-05-06  83.31% 84.82% 84.59%
Baseline 40.46% 40.46% 40.46%

Table 3: Accuracy scores across three tests for [CONCLASS dataset

The Wikidata dataset (Table 4) generally showed lower accuracy scores compared to the other
datasets, with most models clustering around the 35-45% range. Among all models, Gemini-
2.5 Pro achieved the highest performance, with a peak of 47.07% in the third test. In contrast
to their strong results on previous datasets, GPT-4o and Gemini-2.5 models demonstrated more
modest performance here. GPT-4o0-mini fell behind the baseline, which reached 43.97% accuracy,
highlighting the difficulty of classifying this dataset for LLMs.

Across all three datasets, Gemini-2.5 Pro achieved the highest accuracy scores, consistently
outperforming other models. On Wikidata, we also observed a general decline in accuracy. While
top-performing models often exceeded 80% accuracy on ArtDL and ICONCLASS, performance on
Wikidata was relatively lower, reflecting a more challenging classification scenario. The ResNet50
baselines were often outperformed by the models, despite being fine-tuned directly on the target
datasets.

Finally, performance across the three evaluation configurations varied by dataset. On ArtDL,
accuracy generally improved across the three stages, with few-shot learning leading to lower re-
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Model Test 1 Test 2 Test 3

gpt-40-2024-08-06 45.75% 45.31% 45.31%
gpt-40-mini-2024-07-18 35.78% 36.95% 34.31%
gemini-2.5-flash-preview-05-20 45.45% 45.31% 44.57%
gemini-2.5-pro-preview-05-06  45.89% 45.31% 47.07%
Baseline 43.97% 43.97% 43.97%

Table 4: Accuracy scores across three tests for [CONCLASS dataset

sults, with only two cases, Gemini 2.5 Flash on ICONCLASS and Gemini 2.5 Pro on wikidata
reaching 1-2% increment in accuracy. On ICONCLASS, the pattern was less uniform but still
showed improvement in several cases. On Wikidata, performance remained relatively stable across
the three configurations, with no consistent trend of improvement.

4 Discussion

In this section, we discuss the performance of different model architectures and prompt designs in
the task of classifying Christian iconography (RQ1) and how the results change after the progres-
sive enrichment of contextual data (RQ?2).

For RQ1, the results show that multimodal LLMs generally outperform traditional super-
vised models for the task of image classification of Christian iconography. For the three datasets,
Gemini-2.5 Pro achieved the highest accuracy in all three evaluation settings, surpassing fine-tuned
ResNet50 baselines and yielding higher results in ArtDL. These findings confirm the effectiveness
of multimodal LMMs in semantically dense and specific tasks. The Classification for Wikidata
images witnessed overall lower accuracies, and this behavior suggests that these models tend to
perform worse when facing inconsistent image qualities and sizes, such as the case of Wikidata,
and is confirmed by the consistency check, where the identical image pairs are predicted differently
when the sizes differ (Figure 2). Additionally, these LLMs are likely being trained on ArtDL and
ICONCLASS datasets, as is common knowledge that the publishers scrape the Internet for train-
ing data. At the same time, Wikidata, which presents denser metadata, may not have its specific
weights corresponding to the Iconclass codes tuned efficiently. Additionally, the two supervised
ResNet50 baselines, despite being fine-tuned only on a small set of 600 images, demonstrate that
recent multimodal LLMs outperform supervised approaches, even for ArtDL, which has a more
consistent number of images.

Regarding RQ2, we found that zero-shot classification using label descriptions generally im-
proved accuracy except for Wikidata, where the changes are mostly negatives. Overall, the specific
case of few-shot classification produced worse results. While Gemini 2.5 flash in ICONCLASS
and Gemini 2.5 Pro in Wikidata demonstrated slight improvements in accuracy, the other mod-
els performed worse. This outcome proves that few-shot learning not always improve results and
highlights the possible sensitivity to prompt formatting, class imbalance, or overfitting to a few
visual characteristics. This also highlights the sensitivity to poorly chosen exemplars, which can
degrade performance rather than enhance it.

Despite these results, several limitations should be acknowledged. This study focuses on clas-
sifying single-labeled images, and the number of classes per dataset was relatively low; these lim-
itations do not reflect a real-world scenario. Additionally, few-shot prompting did not consistently
improve results, suggesting that the task is non-trivial. Further research is needed to optimize
prompt formatting and choose the correct few-shot exemplars. These findings provide empiri-
cal support for using general-purpose multimodal models for the iconographical classification of
artwork images. In particular, they validate the applicability of multimodal LLMs for low-data
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Pair Image 1 Dataset Ground Truth Predicted Image 2 Dataset Ground Truth Predicted

T1H(JOHN T1H(JOHN
THE BAPTIST) ~ THE BAPTIST)

wikidata | THUOHN T1H(PAUL)

ArDL THE BAPTIST)

11H(JOHN THE

ArtDL 11H(PETER) 11H(PETER) BAPTIST)

wikidata =~ 11H(PETER)

TTH(JOHN THE

ArtDL T1H(PETER) T1H(PETER) BAPTIST)

4 E ArtDL 11H(JEROME) 11H(JEROME)

Figure 2: Example of incorrectly predicted images for Gemini 2.5 Pro, test 2. The image classifi-
cation per row, one from ArtDL on the left and one from Wikidata. The focus is on the predicted
class, differing for each dataset.

wikidata ~ 11H(PETER)

wikidata ~ 11H(JEROME) 11HH(CATHERINE)

and high-complexity domains, such as Christian iconography, where semantic and label overlap is
common. Even with these limitations, state-of-the-art models can detect and classify Saint George
or Saint Sebastian, suggesting that these tools may help scholars in metadata curation without the
need for extensive retraining.

5 Conclusions

This study serves to benchmark multimodal LLMs for the task of classifying Christian iconog-
raphy, a domain with limited training data. The output is a reproducible evaluation framework
spanning three datasets and classification settings, providing a baseline for future research in ap-
plying general-purpose Al systems to cultural heritage tasks. The results demonstrate that Gemini
2.5 Pro and GPT 4o can outperform traditional supervised baselines, indicating their potential as
tools for metadata enrichment and semantic indexing in Digital Humanities workflows (RQ1).
Prompt enrichment improved performance in most settings, but few-shot learning mostly led to
lower outcomes (RQ?2), suggesting that a more optimal example selection is required. This could
be addressed by integrating Retrieval Augmented Generation (RAG) pipelines while also reducing
the risk of hallucinations. For future works, we aim to extend this benchmarking to include Vision-
Language models, such as CLIP, SigLIP, and BLIP-2, which are commonly used for this task due
to their high value in zero-shot classification. Additionally, to align this study with real-world
scenarios, where classification is required for polyptychs or paintings featuring multiple saints,
we need to integrate various visual and textual elements through training on datasets specifically
providing this information.
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A Training Parameters for Baseline Models

The supervised baseline models were trained using ResNet50 architecture with the following hy-
perparameters for both datasets.

Parameter Hyperparameters
Epochs 50

Batch Size 32
Learning Rate le-3

Image Size 224x224
Pretrained Weights ImageNet
Weighted Sampling Yes

Table 5: Training hyperparameters for baseline ResNet50 models on ICONCLASS and Wikidata
datasets

The models were trained using weighted sampling to address class imbalance in both datasets.
Training was performed using PyTorch with Adam optimizer and cross-entropy loss. Early stop-
ping was applied based on validation accuracy with a patience of 10 epochs.
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Figure 3: Training and validation curves for the ResNet50 baseline model on the ICONCLASS

dataset. The plots show accuracy and loss progression over 50 epochs with the hyperparameters
specified in Table 5.
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Figure 4: Training and validation curves for the ResNet50 baseline model on the Wikidata dataset.

The plots show accuracy and loss progression over 50 epochs with the hyperparameters specified
in Table 5.
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