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Abstract

This paper examines how pretrained vision models perceive and organize a corpus of
19th-century decorative artefacts and printed materials. Using a zero-shot approach, we com-
bine feature extraction, dimensionality reduction, and clustering to explore how convolutional
and transformer architectures respond to historical visual material. Two complementary
experiments are presented: the first analyzes corpus-level organization through unsupervised
clustering of VGG16 embeddings; the second investigates similarity retrieval from individual
queries to compare model interpretability (VGG16, EfficientNet, ViT, DINOv2, and CLIP).
By visualizing and aggregating activation maps, we discuss biases in how models attend
to shape, ornament, and layout, often emphasizing background contrast or framing over
meaningful decorative structure. Rather than measuring accuracy, this study focuses on
interpretability and bias, highlighting the challenges of adapting art-historical imagery to
contemporary vision pipelines.

Keywords: Islamic ornament, 19th-century ceramics, Unsupervised image analysis, Feature
clustering, Interpretability, Vision transformers, Zero-shot learning

1 Introduction
1.1 Background and related work in Art history

During the 19th century, the development of new industrial techniques led to a rapid expansion of
applied and decorative arts, stimulating increased artistic, commercial, and institutional engage-
ment with this field. Consequently, this period saw the establishment of new institutions dedicated
to supporting the study and promotion of applied arts, reflecting the intersection of artistic prac-
tice and industrial production [7; 14]. Early examples include the South Kensington Museum in
London (now the Victoria and Albert Museum) and the French Union Centrale des Arts Décoratifs
(now the Musée des Arts Décoratifs in Paris).

Alongside this industrial and artistic development, a renewed European fascination with Is-
lamic art began to emerge. Contemporary commentators frequently praised the quality and so-
phistication of Islamic ornamentation, often juxtaposing it with a perceived artistic decline in the
industrializing West [11]. This discourse positioned Islamic art as a valuable source of inspiration
for European artists and manufacturers in search of aesthetic alternatives.

This enthusiasm for Islamic models manifested in a wide range of decorative objects that incor-
porated patterns and motifs drawn from Islamic arts, ranging from precise imitations to more freely
adapted designs. Among the various media, ceramics were particularly influenced by Islamic art,
often drawing directly on ceramic traditions—most notably Iznik ware, an Ottoman style renowned
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Figure 1: 19th-Century European Reinterpretations of Islamic Art

(a) Iznik Dish, c. 1545, earthenware, Paris, Louvre, OA 6643.

(b) Théodore Deck, Dish, 1860-1870, earthenware, Guebwiller, Musée Théodore Deck, THD-993.3.10.
(c) Adalbert de Beaumont, Recueil de dessins pour ’art et I’industrie, Paris, Delatre, 1859, pl. 54

(d) Théodore Deck, Basin, 1863, earthenware, Paris, Musée des Arts Décoratifs, UC 515.

for its vivid colours, intricate floral and geometric motifs, and refined craftsmanship, mainly pro-
duced during the 16th and 17th centuries.

This artistic phenomenon has been widely studied through museum exhibitions, which bring
together objects from different periods that are nonetheless closely connected, juxtaposing original
artefacts from the Islamic world with the 19th-century decorative objects they inspired [5; 9; 12;
13; 17]. Research arising from these exhibitions often highlights the emergence of new networks
in the 19th century, connecting collectors, designers, industrialists, and scholars. It also raises
important questions about how visual models circulated at a time when artefacts from the Islamic
world were relatively rare and often held in private collections.

Printed materials have been proposed as a potential vector in these transmissions. They en-
compassed a wide range of formats, including journals specializing in the decorative arts and pub-
lications dedicated to Islamic art history. Pattern books, in particular, played a key role in the
reproduction and adaptation of ornamental motifs [8]. Over time, designs drawn from Islamic art
became increasingly present in these publications, with some volumes devoted entirely to orna-
mentation in Islamic arts.

Taken together, these developments reflect a proliferation of printed materials that greatly ex-
panded the circulation of ornamental imagery, alongside the rise of serial production methods in
the decorative arts. The scale and repetition introduced by these practices were inherently quantita-
tive, revealing the limitations of isolated case studies and underscoring the relevance of large-scale
analytical approaches for understanding how artistic forms spread.

To address this question, we combine large-scale image analysis with metadata-driven group-
ing to identify patterns of influence across visual corpora. A central objective is to assess the
dissemination of ceramic designs derived from Islamic arts in 19th-century ceramic production,
and to evaluate critically whether their influence has been as significant as traditionally assumed.
Within a broader research framework, this project examines the dynamics of artistic transmission
during the Industrial Era by modelling visual borrowing and transformation across a corpus of ce-
ramic works and digitized printed materials. In doing so, it raises broader questions about cultural
exchange, the diffusion of visual motifs, and the entanglement of art, industry, and printed media
in the 19th century.

At a practical level, our aim is to identify connections between objects—here understood as
instances of copying or reuse. To this end, we are conducting an extensive similarity search, which
will serve as the basis for a network analysis. While human observers can readily perceive such
visual similarities across decorative elements, these associations can be more difficult to detect
computationally.
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This paper presents the first phase of an ongoing research project, during which the question
of interpretability emerged as a central concern. As we began applying pretrained computer vision
models to an art-historical corpus of 19th-century ceramic artefacts and printed documents, we
sought to understand how these models perceive and structure such material in a zero-shot setting.
Beyond measuring performance, our aim is to reflect on what these models can meaningfully “see”
in this context, as well as on the visual patterns, materials, and stylistic cues that they systematically
fail to capture.

1.2 Related work in Computer vision

These initial objectives are grounded in the broader framework of distant viewing approaches [1].
Tracking the circulations of visual forms presents significant methodological challenges that are
increasingly addressed through computational means[10].

Recent advances in computer vision have enabled large-scale visual analysis of cultural her-
itage objects, providing methods directly relevant to this study. For instance, Pondenkandath et al.
(2021) developed CNN-based techniques for motif retrieval across different depictions of histor-
ical watermarks, demonstrating robust cross-depiction matching [18]. Zhao et al. (2023) applied
deep learning to painted pottery, enabling similarity-based retrieval of motifs and visual cluster-
ing of stylistic traditions [19]. Elgammal and Saleh (2015) proposed a network model to quantify
originality and influence in art history, laying the groundwork for diffusion analysis [6]. Mei-
necke et al. (2024) addressed the challenge of inconsistent metadata in medieval image corpora
using embedding-based visual analytics to support distant viewing approaches[15]. Meyer et al.
(2024) combined CLIP with object detection in museum collections to enable visual content-based
search, highlighting the potential of vision-language models for multimodal exploration of deco-
rative motifs [16].

Several studies have also explored multimodal and similarity-based approaches to improve in-
terpretability in artwork analysis. CLIP has been applied to the NoisyArt dataset to test zero-shot
classification and retrieval capabilities, with GradCAM used to highlight the image regions most
strongly associated with textual descriptions [3]. Similarly, the CLIP-Art model fine-tuned CLIP
on the iMet collection through contrastive language—image pre-training to address fine-grained
artwork classification and retrieval [4]. More recent transformer-based similarity approaches have
emphasized attention-based embeddings to model cross-artwork visual affinities, underlining in-
terpretability as a critical concern [2]. While these methods focus primarily on performance and
multimodal generalization, our work emphasizes visual interpretability within a historical corpus
rather than optimizing cross-domain retrieval accuracy.
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Figure 2: Examples from the prints dataset, consisting of digitized 19th-century printed materials.
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Figure 3: Examples from the artefacts dataset, comprising photographs of 19th-century ceramic
objects.

2 Methodology
2.1 Dataset

The dataset comprises a heterogeneous corpus of historical printed materials and ceramic object
photographs, assembled from a variety of institutional and online sources. While some images
were gathered through automated harvesting methods (e.g., IIIF manifests), a substantial portion
required manual selection to ensure alignment with the research scope. The final cleaned dataset
contains 1,932 images for the print collection and 1,758 images for the object photographs. For
the experiments conducted here, we worked with a subset of 665 items in total, with 248 images
consisting of digitized scans of historical pattern books. For volumes with broader coverage, only
the pages or sections directly related to Islamic art were retained. These scans typically feature
ornamental motifs in various formats: isolated figures, repeating patterns, or full decorative com-
positions (Figure 2).

The remaining 381 images are photographs of 19th-century ceramic objects, collected from
museum and auction house websites. These images display variation in framing, lighting, and
background treatment, and include both wide-angle and close-up views, capturing objects from
multiple perspectives (e.g., frontal, oblique, and rear). No normalization or image pre-processing
was applied (Figure 3).

Together, the two components form a visual corpus that reflects both historical reproduc-
tion (via print) and contemporary documentation (via photography). Each subset poses distinct
challenges for computational analysis and requires tailored treatment within the data processing
pipeline.

Data Category Number of Images
Scans of 19th-Century Prints 248
Ceramic Artefact Photographs 381

Table 1: Overview of the two data categories used in the study.

Working with such material exposes a fundamental tension between the art-historical notion
of a corpus and the computational notion of a dataset. In art history, a corpus is traditionally an
assembled group of works selected to answer particular historical questions and shaped by critical
judgment. The main criteria at stake are authorship, provenance, chronology, or context, guided by
scholarly aims rather than by scale or standardization. On the other hand, a computer vision dataset
is constructed to meet computational requirements: it must contain large numbers of consistently
formatted and annotated images suitable for algorithmic processing and statistical comparison.
Treating art-historical images as datasets therefore raises important challenges: how to preserve
meaning, context, and uncertainty within systems designed to favor uniformity and quantification,
and, most importantly, how to critically examine the forms of attention, categorization, and visual
logic that emerge when computer vision models analyze art in ways that diverge from human
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perception and historical understanding.

2.2 Initial strategy and model selection

Given the heterogeneity of the corpus and the absence of annotated data, understanding what a
model “sees” in an image is rarely intuitive, and this opacity increases when the model is applied
zero-shot to materials that differ substantially from its training data. Before evaluating whether
pretrained models can extract art-historically relevant features, it is therefore essential to identify
which visual attributes—though irrelevant to the research questions—might nonetheless dominate
the model’s internal representations. This helps in designing more robust visual pipelines and pre-
processing strategies. Thus, our initial objective was to evaluate the behavior of visual models
without task-specific adaptation, since the corpus was relatively small and heterogeneous, com-
putational resources were limited, and consistent labels or controlled conditions for meaningful
fine-tuning were unavailable.

In a preliminary comparison, we tested several families of models — from multimodal vision—
language architectures (OpenAl’s CLIP, BLIP, Microsoft’s Florence-2) to conventional convolu-
tional backbones (VGG16). These experiments immediately highlighted the importance of inter-
pretability: the groupings produced by vision—language models were difficult to interpret consis-
tently, and Florence-based captioning followed by BERT embedding and PCA projection did not
yield clusters that were visually or semantically coherent (see Appendix 7). In contrast, convo-
lutional models such as VGG16 displayed clearer internal structure in PCA space, with clusters
that could be related to object shape, decorative density, or layout features. While these groupings
were not always the most accurate in a strict quantitative sense, they proved more interpretable
than the outputs of vision—language models.

Accordingly, we aimed to assess how pretrained models organize and interpret our dataset un-
der zero-shot conditions and to identify configurations that produce interpretable structures rather
than merely optimized ones. To this end, we designed two complementary experiments focusing
on interpretability at different scales.

The first examines the global organization of the corpus through unsupervised clustering, re-
vealing the visual regularities that emerge across the dataset as a whole. The second focuses on
local relationships between individual images, exploring how specific features drive similarity
and visual association within the learned representation space. Together, these experiments form
a structured, multi-level approach that allows us to analyze how computer vision models, here
VGG16, perceive and structure historical visual material, moving from corpus-level organization
to image-level feature associations.

2.3 Experiment 1 — Clustering of visual embeddings

This first experiment applies a standard unsupervised pipeline combining VGG16 feature extrac-
tion, PCA dimensionality reduction, and K-Means clustering.

Each image is converted to grayscale, resized to 224 x 224 px, and processed through VGG16
(ImageNet weights, classification layers removed). The resulting embeddings are projected with
PCA to identify the main axes of visual variation, then grouped with K-Means to examine whether
visually coherent clusters emerge, such as groupings based on shared shape, color, or ornament
structure (Figures 8, 9 and 10).

The analysis was conducted separately on the subset of object photographs (K = 7) and on the
subset of print scans (K = 10). For the prints, the experiment was repeated with cropped borders
for comparison. In both cases, the number of clusters was selected empirically through iterative
inspection of clustering outcomes. While this approach provides an exploratory baseline, further
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Figure 4: Evaluated pipelines for unsupervised image grouping. All approaches start from a
preprocessing stage (resizing, grayscale, channel duplication). The main path (highlighted) uses
VGG16 with PCA and K-Means. Alternatives (gray) like Florence-based captioning with BERT,
CLIP/BLIP, and fine-tuning were less effective or impractical for our corpus.

refinement—such as using silhouette analysis or hierarchical evaluation metrics—will be required
to stabilize K.

To examine the internal coherence of each cluster, we computed a mean feature heatmap by av-
eraging the spatial activations of all cluster members within the last convolutional layer of VGG16.
These visualizations help identify which regions of the artefacts most influence cluster assign-
ments, indicating whether the grouping is driven by global form, surface texture, or decorative
layout (Figures 11 and 12).

For each image I;, the pretrained network f,(I;) produces a feature vector z; € RY, which is
projected with PCA and grouped using K-Means clustering.

To visualize how clusters are formed, we compute activation maps H; = h( fs,1;) by aver-
aging the convolutional responses from the last spatial feature layer L of VGG16. Formally, this
can be expressed as:

c F(L)
Dy — L D), o= fo (L) ’
6 ( ) Cczlfe,c ( ) HJ’TG(L)(LJ)H

where fe(L) (I;) € REXHsxWs corresponds to the activations from the last convolutional block of
VGG16, with C' channels and spatial dimensions (H, Wy).

For each cluster, a mean heatmap Hj, is obtained by averaging the activation maps of all its
member images:

1€Cy,

where Cj, is the set of images belonging to cluster k£ and Ny = |Cy|. These averaged maps provide
an aggregate view of the regions to which the model is most responsive within each group. Random
examples from each cluster are displayed alongside their corresponding mean heatmaps to illustrate
the characteristic visual patterns captured by the model and to support the interpretation of its
attention across clusters.

The combination of K-Means clustering with cluster-level mean heatmaps thus provides an
interpretable baseline for observing how a generic CNN organizes form and ornament in 19th-
century ceramic artefacts and printed materials.
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2.4 Experiment 2 - Similarity-based interpretability

To complement the clustering-based analysis, this second experiment focuses on similarity re-
trieval from a single image query. While Experiment 1 examined the global structure of visual
embeddings, here we analyze how models perceive similarity between individual images, an ap-
proach comparable to visual comparison in art history.
Objective. We aim to assess the interpretability of model-based similarities and compare their
visual focus. Each pretrained model retrieves the most similar artefacts for a given query image,
based on its internal representation of form and texture. For each retrieval, we compute a heatmap
showing which image zones contribute most to similarity, distinguishing meaningful decorative
regions (motifs, texture) from irrelevant cues (contours, background, illumination).
Models and embeddings. Five pretrained architectures were evaluated, representing both con-
volutional and transformer-based paradigms: CNNs (VGG16, EfficientNet-B7) and Transform-
ers (ViT-Base (patch16-224), DINOv2-Base, and CLIP-ViT-B/32). All were used in a zero-shot
setting, operating solely from generic visual priors. Each model transforms an image into a high-
dimensional embedding z(™) = f, (I), indexed with FAISS using cosine similarity to retrieve the
k nearest neighbours (Figures 13 and 14).
Retrieval and interpretability pipeline. For a query I,, its embedding zgm) is compared to all
others in the shared embedding space Z, and the top-k most similar images are returned. An acti-
vation map H,, = gy,, (I) highlights the regions most responsible for the similarity. In convolu-
tional models, H,, averages final convolutional activations; in transformer models, it corresponds
to mean attention weights per patch. The most activated region 1&:23, = arg max H,, identifies the
visual nucleus driving similarity.

Formally, this process can be expressed as:

o) = §C (P, H o, 1) "
Om =~ 6m7c 9 m — ,mi, crop - aI‘g max m-
= R

m

where fy, =~ denotes the pretrained vision model m (e.g., VGG16, EfficientNet, ViT, DINOv2,
CLIP), and fg(i) (I) € RE*HsxWs corresponds to the activations from its last spatial feature layer L,
with C' channels and spatial dimensions (H, W). For convolutional networks, this layer corre-
sponds to the final convolutional block; for transformer-based architectures, it refers to the last
attention block.

Dataset-level aggregation. Local activations H,,(I;) are aggregated across the corpus to charac-
terize each model’s global visual focus:

where N is the total number of images in the dataset. For VGG, multi-layer activations (block3-5)
are combined and normalized to integrate texture- and form-level features. All activation vectors
are then pooled, reduced with UMAP, and clustered using HDBSCAN, producing recurrent motif
clusters that capture each model’s “visual signature” (see Figure 5).

2.5 Results and discussion

Evaluation protocol The pipeline was applied independently to the two subsets of our corpus: one
comprising photographs of ceramic objects, and the other consisting of scans of printed materials.
The goal in both cases was to organize the images into more coherent subgroups, facilitating further
segmentation and cleaning.
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Figure 5: Multi-model similarity interpretability pipeline. Each model retrieves top-% similar
images for a query I,. Heatmaps H,, highlight regions driving similarity, while the crops Iggl),
allow cross-model interpretability. At the dataset level, activations from the embedding space are
aggregated into H,,, revealing global attention patterns and dominant motifs across the corpus.

For clarity, EfficientNet is not shown in the diagram.

Although the broader aim of the project is to investigate visual similarity between printed ma-

terials and objects, direct cross-dataset similarity scores between paper-based and ceramic images
are generally low, reflecting inherent differences in medium, scale, and texture. By first concentrat-
ing on a single modality, we can identify which visual features and patterns the model prioritizes,
providing insight to guide the design of subsequent cross-dataset similarity analyses.
Cluster structure (PCA) When clustered via K-Means (K=7), the artefact embeddings split into
visually coherent groups along two principal axes (see Figure 8). The first principal component
(PC1) seems to correlate with object shape: elongated, bottle-form vessels exhibit high positive
PC1 scores, whereas flat bowls and plates fall at the negative extreme. This suggests that VGG16
filters encode “verticality” versus “flatness” as a primary criterion of variation. The second compo-
nent (PC2) aligns with decorative complexity: richly ornamented items—with dense floral or geo-
metric motifs—occupy higher PC2 values, while more sparsely decorated or monochrome pieces
load lower.

In the PCA plot of the full document images, several distinct visual groupings emerged (see
Figure 9). The first principal component (PC1) captures large-scale layout differences: docu-
ments with heavy or full-page illustrations tend to lie on one end of the spectrum, while simpler
documents—such as those showing isolated motifs or lighter printed layouts—are positioned to-
ward the opposite side. The second component (PC2) appears to reflect a mixture of layout density
and tonal contrast. For instance, documents with tightly packed visual information—such as grid-
like arrangements of repeating motifs—cluster along one axis, while documents with broader white
space or lower contrast occupy a more dispersed region.

However, closer inspection of the plot suggests that VGG16 may rely heavily on structural or
framing features, such as dark zones in the background or shadowed page edges. These features,
while visually consistent, are not semantically meaningful within the goals of this project, which
seeks to distinguish actual content types (e.g., ornaments vs. object representations vs. architec-
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tural plans).

Mean activation maps per cluster The average activation heatmaps reveal a marked difference in
the nature of the visual cues driving cluster formation in the two datasets. In the artefacts clusters,
activations align with object contours and ornamented surfaces, indicating that clustering is driven
by meaningful visual content such as shape and decorative density. In contrast, the document
clusters show strong activation concentrated in the corners, suggesting that the model responds
primarily to borders and binding shadows. Pages from the same volume frequently fall into the
same cluster, not only because of similarities in their visual content, but also due to recurring layout
and framing effects.

The impact of this reliance becomes clearer in the cropped-documents PCA—KMeans projec-
tion, where such peripheral cues were intentionally removed to evaluate their impact (see Fig-
ure 10). Compared to the uncropped version, the overall structure of the PCA projection becomes
more compact and internally coherent. Several clusters visible in the uncropped version collapse
or reorganize, suggesting a stronger dependence on the central graphic content. Notably, in the
cropped version, images representing isolated motifs and those containing continuous ornamen-
tal patterns begin to separate more cleanly, suggesting that the removal of background context has
allowed the network’s representation to focus more on visual differences in the central subject mat-
ter. Additionally, certain architectural prints, which often had strong vertical lines or symmetrical
structures, become less dominant in the representation space, further supporting the idea that the
network was previously influenced by framing rather than semantic content.

Similarity-based interpretability The retrieval results in Figure 5 highlight distinct interpretabil-
ity patterns across the evaluated models. VGG16 provides the most spatially focused heatmaps,
consistently emphasizing the central ornamental medallion and its surrounding radial motifs. The
retrieved neighbours closely mirror these structural features, indicating that VGG16 relies heav-
ily on mid-level form and texture. EfficientNet also retrieves artefacts with comparable overall
composition, but its activation maps differ in focus: they often place stronger weight on the bor-
der of the object and the circular framing elements. In contrast, ViT displays broad and patchy
attention spread. The activation patterns appear more evenly distributed across the surface of the
object. While the retrieved images generally maintain comparable overall organization, the at-
tention maps show less evidence of consistent focus on specific motifs, implying that the model
may be capturing similarity in terms of broader shape or layout. CLIP likewise retrieves artefacts
that resemble the query in composition and palette, but its heatmaps more frequently highlight pe-
ripheral or low-texture regions. While it is difficult to attribute this behaviour to a single factor,
it is consistent with broader representational tendencies observed in multimodal models, where
similarity may be influenced jointly by local and global visual cues as well as broader stylistic or
contextual associations.

Metrics limitations Our evaluation is qualitative, as the dataset does not include ground truth
labels or predefined categories that would allow the use of standard clustering metrics. We there-
fore assess cluster coherence by manually inspecting grouped images and analyzing their spatial
distribution in the PCA projection.

3 Conclusion

This study applies a standard unsupervised pipeline—VGG16 feature extraction, PCA, and K-
Means clustering—to photographs of 19th-century artefacts and digitized printed materials, with-
out any task-specific training or fine-tuning. This setup reflects common constraints in digital
humanities: limited data, heterogeneous image formats, and scarce resources for model adapta-
tion.

Our observations refine prior insights on multimodal models applied to cultural heritage. While
transformer-based pipelines demonstrate remarkable retrieval performance, their attention maps
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Figure 6: Visualization of Experiment 2 results. For each model, the heatmaps show the query
image (left) and its most similar retrieved artefacts. Warmer regions indicate areas most influential
in the model’s perception of resemblance.

often reflect semantic or stylistic associations rather than strictly visual structures. In contrast, the
convolutional hierarchy of VGG16 produces spatially coherent activations that align more closely
with human perceptual logic—edges, contours, symmetry, and localized ornament. This contrast
highlights that higher-performing multimodal transformers are not necessarily more interpretable
for art-historical purposes. Our results therefore reaffirm the analytical value of simpler convo-
lutional architectures in interpretability-driven research, where the goal is not predictive accuracy
but the legibility of visual correspondences.

A central aspect of this work is the adoption of a multi-scale interpretability strategy combining
corpus-level grouping with spatial visualizations. At the corpus level, unsupervised clustering
reveals how pretrained convolutional features organize the dataset into coherent groups, with mean
cluster heatmaps highlighting recurrent regions of model sensitivity that are difficult to discern
from individual images. Atthe image level, single-image heatmaps localize the specific ornamental
details driving similarity judgments. This two-step approach forms a practical pipeline linking
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corpus-level structure to image-level visual evidence.

Even in this zero-shot setting, VGG16 captures some relevant visual properties, including
shape, surface texture, and color distribution. While these attributes supported the emergence of
partially coherent image clusters, they also revealed structural limitations. In particular, the model
often prioritized superficial cues such as framing, background contrast, or page layout—features
that do not always align with meaningful distinctions in the context of art historical analysis.

These findings underscore the gap between human visual reasoning and pretrained model be-
havior. Differences that are significant for researchers—such as decorative type, cultural reference,
or motif composition—may be ignored by the model, while insignificant visual regularities are em-
phasized. Despite this, the interpretability of the representations and heatmaps proved useful for
identifying biases and potential avenues for segmentation.

The lack of annotated labels prevents the use of conventional clustering metrics. As such, our
evaluation remains qualitative, based on visual inspection of PCA distributions and intra-cluster
coherence. This limits the reproducibility and validation of the results and remains a key method-
ological challenge to be addressed.

In future work, we aim to refine this approach by integrating visual and textual information. Al-
though initial experiments combining Florence-2-generated captions with BERT embeddings did
not yield meaningful structures, we believe that caption-based representations may offer comple-
mentary signals, particularly when dealing with human descriptions added in catalogs. Exploring
such hybrid strategies could improve semantic grouping and help overcome current limitations in
working with visually and semantically complex datasets.

Ultimately, while the digitized prints and photographs of ceramic artefacts are studied in our re-
search as a corpus reflecting a single historical phenomenon, our experiments confirm the necessity
of maintaining two distinct datasets for computational processing. Although this distinction may
appear straightforward in our case, approaching heterogeneous and complex art-historical corpora
from a model-interpretability perspective can help reveal subgroups as perceived by the model,
thereby guiding the steps—such as classification, normalization, or object detection—needed to
make an art-historical corpus suitable for computational analysis.
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Figure 7: PCA of BERT embeddings from Florence-2-large-generated captions.

Clsters
° 0

400

PCA Component 2

200

—a00

400 200 0

o rs o = = 200 400 600 800 1000
A component 01 PCA Component 1

Figure 8: Visual Clustering of the Artefacts Dataset: K-Means Labels and PCA Image Projection
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Figure 9: Visual Clustering of the Prints Dataset: K-Means Labels and PCA Image Projection
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Figure 10: Visual Clustering of the Prints Dataset with Image Cropping: K-Means Labels and
PCA Image Projection

1503



Cluster 0 (n=23)

Vg

altol

"3‘-
e
<
b

S

7ot
ot

Figure 11: Cluster visualization based on PCA-projected VGG16 features, with mean activation
heatmaps computed for each cluster. The first column shows the average heatmap of all items in
the cluster, highlighting regions most attended by the model. The following five columns display
randomly selected images from the cluster.
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Figure 12: Cluster visualization based on PCA-projected VGG16 features, with mean activation
heatmaps computed for each cluster. The first column shows the average heatmap of all items in
the cluster, highlighting regions most attended by the model. The following five columns display
randomly selected images from the cluster.
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Figure 13: Example of similarity retrieval results for Experiment 2. For each model, the first
image (left) is the query, followed by the top-k most similar artefacts retrieved in the embedding
space.
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Figure 14: Example of similarity retrieval results for Experiment 2. For each model, the first
image (left) is the query, followed by the top-k most similar artefacts retrieved in the embedding
space.
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