Classifying Name-Date and Year Figures in Mixtec
Codices

Girish Salunke ®, Christopher Driggers-Ellis' ®, and Christan Grant

! Computer & Information Science & Engineering, University of Florida, Gainesville, FL, USA
Abstract

The Mixtec codices are precolonial and early colonial Mesoamerican manuscripts that use a
semasiographic writing system to record historical, genealogical, and cosmological informa-
tion. Decoding these manuscripts is uniquely challenging due to their non-linear structure and
symbolic complexity. In this work, we introduce a novel application of Vision Transformers
(ViTs) to classify key elements of Mixtec writing. Our classification pipeline involves a type
classifier to distinguish between year and name-date symbols, followed by a symbol classifier
to identify calendrical signs, and finally, a numerical bead counter. This pipeline tackles the
challenge of high intra-class variability in hand-drawn symbols and separates the complex,
often overlapping symbolic glyphs from their numerical components. Our results show a
surprising dichotomy: ViTs achieve an F1 score greater than 0.9 in symbol classification but
struggle with the counting task, where the F1 score is about 0.22. This contrast highlights a
core architectural trade-off in Vision Transformers: their global attention mechanism helps
with holistic pattern recognition, but it hinders fine-grained spatial localization. This insight
clarifies both the potential and limitations of using ViTs to decode semasiographic texts,
which can help guide more targeted applications in cultural heritage preservation. Our code is
available here: https://github.com/ufdatastudio/mixtec-namedate-classifiers

Keywords: Mixtec Codices, Vision Transformers, Semasiography, Cultural Heritage, Image
Classification, Binary Classification, Mesoamerican Studies, Mesoamerican Manuscripts,
Pictographic Manuscripts, Semasiographic Manuscripts, Pictographic Writing

1 Introduction

The Mixtec codices are manuscripts produced by the Mixtec civilization of pre-colonial and early
colonial Mesoamerica. These codices use a semasiographic writing system—conveying mean-
ing through images rather than phonetic or logographic symbols. Rich with imagery representing
historical events, deities, rulers, and calendrical information, the codices function as complex nar-
rative documents that communicate cultural knowledge independently of phonetic representation.
Analyzing these narratives is fundamental to preserving the cultural memory of the Mixtec peo-
ple and provides a vital indigenous perspective on Mesoamerican history. Understanding these
intricate systems is crucial not only for the Mixtec community but also for broader Mesoamerican
studies, offering unique insights into pre-Columbian thought, history, and social structures that are
often absent from colonial records.

Deciphering Mixtec writing is challenging due to its semasiographic nature, limited annotated
data, and nonlinear reading order, often guided by visual cues within the codices. Recent advances
in computer vision have proven effective for historical document analysis; however, existing meth-
ods are largely designed for phonetic scripts. The decoding of semasiographic systems remains an
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underexplored area, particularly in low-resource contexts where symbol sets are small but seman-
tically dense [7].

In this work, we explore the use of Vision Transformers (ViTs)—a class of transformer-based
models adapted for image understanding—to decode key elements of Mixtec codices. Our goal is
to classify name-dates and year symbols, which are central to interpreting the narratives in these
manuscripts. This paper outlines our contributions, including: (1) proposing a novel ViT-based
pipeline for semasiographic symbol classification, (2) demonstrating the efficacy of ViTs for dis-
tinguishing complex glyphs in low-resource settings, and (3) highlighting the architectural limita-
tions of ViTs for fine-grained counting tasks, which is critical for future research in computational
cultural heritage.

1.1 Background

The Mixtec calendar system, adapted from the broader Mesoamerican tradition, is built on a 260-
day Sacred Calendar (Tonalpohualli) and a 365-day Solar Calendar (Xiuhpohualli) [16]. Individu-
als are named for days in the Sacred Calendar, with the associated date typically corresponding to
their date of birth. These name-dates are composed of a number (1-13) and one of 20 calendrical
day signs (e.g., “8 Deer,” “4 Reed”) [2; 16]. These name-dates serve as proper names for histori-
cal figures, gods, or ancestors and often recur across multiple codices. Similarly, years are marked
using a combination of a number (1-13) and one of four year signs (Rabbit, Reed, House, Flint),
forming a 52-year Calendar Round used for historical chronology [2; 16].

Visually, name-dates and year symbols share structural similarities, typically consisting of a
numeric prefix depicted as a series of small “beads”—paired with a pictorial glyph. However, their
semantic roles differ: name-dates identify individuals (typically based on the calendar day of birth),
while year symbols serve as chronological anchors for historical events. The presence of the year
AO glyph is used to disambiguate these cases in several codices, including the Zouche-Nuttall.!
Figure 1 visually illustrates this distinction, with name-dates highlighted using red squares and
year symbols marked in green. Importantly, the term name-date also applies to instances where
a specific calendar day (e.g., “8 Deer”) is appended to a year (e.g., “3 Flint”) to record the exact
date of a historical event. In such cases, the name-date functions not as a personal identifier but
as a temporal marker within the 52-year calendar round. Both types of symbols draw from the
same visual inventory of calendrical signs and follow a similar structural format. This shared
design creates considerable visual ambiguity, especially when the presence of the AO glyph is
faint, damaged, or omitted. As a result, distinguishing between name-dates and year symbols is
not only essential for determining who is depicted and when an event occurred, but also a non-
trivial classification challenge that requires careful symbolic analysis [2; 16].

To address this challenge, we propose a image classification sequence using ViTs. Figure 3
illustrates this using an example:

» The name-date/year classifier distinguishes between name-dates and year symbols;

» The symbol classifier identifies the calendrical glyph;

* The bead counter module extracts the numerical prefix.

Our approach leverages transfer learning and data augmentation to address the limited size of the
annotated corpus. This study contributes to the growing body of research at the intersection of
machine learning and cultural heritage, demonstrating how transformer-based architectures can
assist in interpreting symbolic, non-phonetic writing [6; 9; 14].

! The “A0” year sign, also known as the annus obitus or “year-of” glyph, is a conventional Mixtec symbol that marks
a calendrical expression as a reference to a year rather than a personal name. It often appears as a stylized circle or
cartouche enclosing the year symbol [2; 16].
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Figure 1: Red squares highlight name-dates, which identify individuals through a combination of
a day sign and number. The green square highlights a year symbol, which serves as a chronological
marker within the narrative. Provided courtesy of the British Museum.

Year Name-Date
Year 12 Flint Year 5 House Year 13 Rabbit 4 Flint 9 House 10 Rabbit

Figure 2: Visual comparison of a name-date and a year symbol with AO marker. Both include
a numerical prefix (beads) and a glyph (e.g., Rabbit or Reed), but the year symbol includes the AO
marker, distinguishing it as a chronological reference rather than a personal identifier. Cropped
from original images provided courtesy of the British Museum.

2 Related Work

Machine-based interpretation of historical manuscripts has long been an interdisciplinary chal-
lenge, at the intersection of computer vision, anthropology, and linguistics. Although considerable
progress has been made in the analysis of phonetic scripts using OCR and handwriting recogni-
tion [17], semasiographic systems, such as those found in Mesoamerican codices, require different
approaches due to their non-linear structure and reliance on symbolic imagery.

Studies on Mesoamerican writing systems show that these codices follow strict conventions to
depict years, dates, names, and individuals [2; 8]. The Mixtec codices, in particular, use calendrical
and genealogical references through symbols rather than phonetic text, making visual classification
crucial for decipherment. Foundational ethnographic and iconographic analyses laid the ground-
work for understanding how meaning is encoded through symbolic combinations of numbers and
day or year glyphs [2; 13].

Recent computational work has begun to operationalize these iconographic insights. One re-
lated work introduces a dataset of segmented figures from three Mixtec codices, Zouche-Nuttall,
Selden, and Vindobonensis, and apply deep learning models (VGG-16 and ViT-B/16) to two bi-
nary classification tasks: gender and pose [15]. Their experiments demonstrate that fine-tuned Vi-
sion Transformers outperform CNNs, particularly at higher learning rates, and that attention map
analyses reveal alignment between model predictions and expert heuristics (e.g., visual cues like
loincloths or skirts). Our work validates the feasibility deep learning approaches to low-resource

1180



cultural heritage datasets.

Name-dates function as identifiers usually assigned at birth according to the 260-day ritual
calendar, while year symbols locate events within a 52-year cycle. Name-dates are essential for
understanding who is involved and when an event occurred in the codices, bridging the gap between
image analysis and historical understanding. Related work explores attributes such as pose and
gender to help identify individual figures [15]. In contrast, our classifiers interpret the temporal
and referential structures that form the manuscript’s narrative backbone.

Beyond Mixtec codices, other work in historical document analysis has applied deep learning
to ancient Egyptian hieroglyphs [1] and Mayan glyphs [3]. However, these efforts often rely on
large labeled datasets or exploit textual regularities not present in Mixtec imagery. Our use of Vi-
sion Transformers demonstrates the potential of transformer-based architectures for low-resource,
symbolic domains like semasiographic scripts.

Particularly, our approach leverages Vision Transformers (ViTs) to offer a promising view of
global visual context—particularly in cases where symbols are semantically rich but structurally
ambiguous. We decode symbolic elements in Mixtec codices by classifying their relevant semantic
components including glyph type, identity, and number using ViTs fine-tuned via transfer learning
(Figure 3).

3 Methodology

The visual complexity and symbolic structure of Mixtec codices require a tailored computational
approach that can distinguish between semantically distinct yet visually similar glyphs. We develop
a modular classification pipeline that isolates and analyzes key calendrical components, specif-
ically name-dates and year symbols, using fine-tuned Vision Transformer (ViT) models. This
methodology section outlines the architecture of our system, training strategy, and data prepro-
cessing steps, providing a foundation for automated calendrical interpretation in semasiographic
scripts.

3.1 Overview of Classification Pipeline

The input to our system is a cropped image segment from annotated Mixtec codices. The classifi-
cation pipeline consists of the following components:

» Name-Date/Year Classifier: Distinguishes whether a given symbol represents a year or a

name by detecting the AO symbol.

+ Symbol Classifier: Identifies the glyph symbol, such as “Rabbit,” “Reed,” or “Flint.”

* Bead Counter: Predicts the numerical component (1-13) typically represented as a se-

quence of small circular marks or “beads” accompanying the main symbol.

Our classification pipeline is designed to decode calendrical symbols found in the Mixtec
codices by identifying their type, symbolic content, and associated number. The input to this sys-
tem consists of cropped image segments containing annotated name-date and year symbols, taken
from the dataset introduced in [15]. This data set includes high-resolution scans of three Mixtec
codices: Codex Zouche-Nuttall, Codex Selden, and Codex Vindobonensis Mexicanus I, and was
initially annotated for figure-level classification tasks such as gender and pose. We extend this
work by labeling symbolic units corresponding to Mixtec calendrical representations.

Figure 3 illustrates the proposed classification pipeline. Images are processed by three classi-
fiers: the Name-Date/Year Classifier, the Symbol Classifier, and the Bead Counter. The Name-
Date/Year Classifier determines whether the symbol represents a name-date or a year. Both cate-
gories share a common structure: a pictographic glyph accompanied by one or more small circular
marks or “beads” representing a numerical value of 1 to 13, but differ in their semantic roles. To
classify an input as a year, the model must detect the presence of the AO symbol. The Symbol
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Figure 3: Proposed classification pipeline: Input images are fed into independent classifiers: a
Name-Date/Year Classifier determines the symbol’s type, a Symbol Classifier identifies the cal-
endrical glyph (e.g., Reed or House), and a Bead Counter extracts the associated numerical value.
The outputs are then combined to form the complete calendrical interpretation, such as “Name-
Date Year 12 Reed” or “Year 9 House.”

Classifier identifies the glyph itself. For year symbols, the classifier classifies the glyph as one
of four canonical symbols: Rabbit, Reed, House, or Flint—associated with the 365-day solar cal-
endar. For name-dates, the classifier selects from a set of 20 day signs used in the 260-day ritual
calendar (e.g., Deer, Jaguar, Rain, Flower) [16].

The Bead Counter, which counts the number of beads depicted alongside the glyph. This
number completes the calendrical representation by forming a pair with the glyph’s sign (e.g., “8
Deer” or “3 Flint”, see Figure 2).

We implement each component in the pipeline using a fine-tuned Vision Transformer (ViT-
B/16) model [5] trained on task-specific subsets of the annotated symbol dataset.

3.2 Vision Transformer Architecture

We fine-tune a Vision Transformer (ViT-B/16) model [5] for each of the classification tasks de-
scribed in our pipeline. This architecture is particularly effective in capturing both local and global
visual dependencies, making it suitable for distinguishing the subtle symbolic differences present
in Mixtec codices.

We initialize our ViT-B/16 models with default weights from the torchvision.models mod-
ule. For each classification task—type identification (name-date vs year), glyph classification, and
bead counting, we replace the original classification head with a task-specific linear layer. The
backbone of the pre-trained ViT is frozen to preserve general visual features, while we train the
classification head on our Mixtec symbol dataset.

We adopt cross-entropy loss and the Adam optimizer with a learning rate of 0.001. To enhance
reproducibility, we fix random seeds and use the automated image pre-processing pipeline associ-
ated with the pre-trained ViT weights, including resizing, normalization, and color adjustments.

We perform fine-tuning using a single A100 GPU, with a batch size of 32 and up to 16 parallel
data-loading workers. We trained each classifier for 10 epochs, as visual inspection of the loss
curves in Figure 4 indicated plateaus in training and test loss.

Given the limited size of our dataset, we employ transfer learning to leverage the representa-
tional power of ViTs pre-trained on large-scale natural image corpora.

1182



— tain_loss — train_loss — train_loss
test_loss test_loss. test_loss

06

@
@ o1s
S

Loss
Loss

05

2 4 6 8 10 2 4 6 8 10
Epochs Epochs

Namedate-year Symbol Classifier Bead Counter

Epochs

Figure 4: Loss Curves for ViT Classifiers - (a) Namedate-year, (b) Symbol Classifier, and (c) Bead
Counter. Each subplot illustrates the progression of both training and testing loss over 10 epochs.

3.3 Data Augmentation

To enhance model generalization and mitigate overfitting due to limited training data, we apply
four data augmentation techniques to the Mixtec symbol images. The dataset is partitioned into
training and test sets in a 70:30 ratio, yielding 48,742 training images and 20,889 test images. Data
augmentation is applied iteratively, with each augmentation technique performed sequentially. Af-
ter each augmentation step, the augmented images are added to the existing dataset, progressively
increasing the total number of images.

Random Reotation: Images are rotated at varying angles to simulate the diverse orientations in
which symbols may appear across different codices.

Color Jittering: Controlled adjustments to brightness, contrast, and hue are applied to account
for visual inconsistencies such as faded ink, aged parchment, and scanning artifacts.
Random Masking: Portions of the symbols are randomly occluded to encourage the model to
learn discriminative features from partial inputs and improve resilience to damage or in-

complete glyphs.

Oversampling of Underrepresented Classes: Classes with fewer examples (especially rarer day
or year symbols) are augmented more heavily to balance the class distribution within the
dataset.

These augmentations, improving the robustness of the classifiers to visual noise, partial occlu-
sions, and layout inconsistencies commonly found in historical manuscripts.

4 Results

Table 1 shows the test results after 10 epochs of training. The type classifier and symbol classifier
achieve better performance than bead counter. The binary type classifier achieves an F1 score >.90,
and symbol classifier achieves F1 score of 0.74 despite the complexity of classifying 20 visually
similar glyphs. In contrast, bead counter shows a >.50 gap between training and test accuracy,
suggesting that Vision Transformers are ineffective for counting repetitive visual elements.

Vision Transformers (ViTs), while effective at symbolic classification, performed poorly in
bead counter tests, with an F1 score of 0.22. The beads in the Mixtec codices are small, repet-
itive, and closely spaced, conditions that challenge ViTs, which lack the local spatial biases that
convolutional networks naturally possess [4].
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Classifier Train Accuracy Test Accuracy Precision Recall F1

Type Classifier 0.9892 0.9795 0.9697  0.9209 0.9436
Symbol Classifier 0.9773 0.8562 0.7491  0.7318 0.7367
Bead Counter 0.7748 0.2589 0.2372  0.2201 0.2283

Table 1: Training accuracy and test accuracy, precision, recall and F1 score for each classifier after
10 epochs.

5 Discussion

Our experiments demonstrate that ViTs can be effectively fine-tuned to classify symbolic compo-
nents in Mixtec codices. The strong performance of the type and symbol classifiers suggests that
ViTs are capable of modeling nuanced visual distinctions between glyph categories, even under
limited data conditions [5; 15].

However, ViTs performed poorly on the bead counting task, with an F1 score around 0.22. This
is likely due to their patch-based processing and global attention mechanism, which makes them
less suitable for tasks requiring fine-grained spatial precision [10]. Beads in Mixtec codices are
small, repetitive, and closely spaced conditions that challenge ViTs, which lack the local spatial
biases that convolutional networks naturally possess [4]. These results suggest that object detection
or localization-based models (e.g., Faster R-CNN, YOLO) may be more appropriate for counting
tasks in this domain [11; 12].

6 Future Work

The classifiers developed in this work—focused on identifying name-dates, year symbols, and their
numeric prefixes serve as foundational components for building a machine interpreter capable of
analyzing Mixtec codices at scale. When integrated with other visual classifiers, these modules
can support more comprehensive semantic parsing of codical scenes.

Our current results are promising for symbolic classification; future work must explore more
suitable models for tasks requiring fine-grained spatial reasoning, such as bead counting. Object
detection or segmentation-based architectures (e.g., YOLO, Mask R-CNN) may offer greater ac-
curacy for localizing and enumerating repeated visual units like beads. Incorporating such models
would strengthen the pipeline’s ability to extract structured temporal data from codices.

Finally, although our work focuses on the Mixtec codices, the underlying architecture and
methodology are extensible to other low-resource semasiographic writing systems, such as Za-
potec, Aztec, or Maya codices, where meaning is conveyed visually rather than phonetically. Fu-
ture research will aim to generalize these classifiers across such systems.

7 Limitations

Several of the challenges we encountered reflect broader limitations previously identified in the
study of Mixtec codices [15], particularly those related to dataset scope and classification method-
ology. While the Mixtec civilization produced a rich corpus of codices, conquest and the passage
of time have left only a few high-quality manuscripts [2]. Although digitized versions of these
codices support computational analysis, the limited number and stylistic variation of surviving
sources constrain dataset diversity and generalizability.

Fine-tuning of ViTs from pre-trained weights introduces additional constraints. These mod-
els are initialized with parameters derived from large-scale image datasets outside the domain of
Mesoamerican visual culture. As a result, they may carry latent biases that are not explicitly visible
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in classification output but could influence downstream tasks. We have not yet investigated the
nature or extent of these inherited biases.

Furthermore, our model does not incorporate context. Symbols are classified in isolation, de-
spite the fact that their meaning in the codices is often compositional. This limitation is particularly
relevant for name-dates, which may function either as personal identifiers or as temporal markers
depending on their placement within a scene. Without considering spatial and relational context,
such as proximity to figures or year glyphs, ViTs may misinterpret what role a name-date plays.

Finally, we have not integrated feedback loops with domain experts or stakeholders in the
Mixtec community but we hope this work will spur these necessary collaborations.
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