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Abstract

Existing computational approaches to diachronic semantics and emotion analysis typically
study word meaning change and emotional evolution separately, limiting our understanding
of how emotions evolve in proportion to the sense level. To bridge this gap, we propose
EmoTracker, a novel framework that integrates diachronic sense modeling with Valence-
Arousal-Dominance (VAD) emotion tracking to model and predict temporal emotion-sense
trajectories. Our contribution is threefold. First, we develop a method for constructing tempo-
ral emotion datasets by integrating diachronic sense data with three different VAD lexicons.
Second, we implement an LSTM architecture with attention mechanisms and momentum-
based features to forecast emotional trajectories over time. Third, we provide interactive 3D
visualizations to explore emotion dynamics over time, and 4D visualizations to capture the
diachronic joint evolution of emotions and senses in the VAD space. Our evaluation shows
that, among the selected lexicons, NRC-VAD is the most suitable for temporal modeling,
though it also reveals the challenges in modeling dominance across lexicons. EmoTracker
bridges diachronic semantics and emotion analysis, providing a comprehensive framework
for computational humanities research.

Keywords: diachronic emotion analysis, LSTM forecasting, temporal sentiment analy-
sis, VAD modeling, semantic change modeling

1 Introduction
Language is constantly evolving, shaped by cultural, social, and technological changes. This is
particularly visible in the lexicon, as meanings and emotional connotations of words change over
time. Such changes typically happen when words become more polysemous by obtaining now
senses or when they lose some of their senses. For example, the English word gay once primarily
meant ‘cheerful’ with a clearly positive connotation but today more neutrally also refers to sexual
orientation; awful originally just meant ‘awe-inspiring’, but now mostly carries a clearly more
negative connotation (‘disgusting’) [9; 15]. Such examples highlight how emotional tone changes
as semantics involving multiple senses evolve.

However, most computational approaches treat semantic change and emotion analysis as dis-
tinct tasks. Semantic shift analysis often relies on diachronic comparisons of word embeddings
[13; 26; 41] and token-level embeddings for sense disambiguation [12; 42], while emotion anal-
ysis uses static affective lexicons with emotional scores that are in some cases reconstructed via
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static word embeddings trained on historical text data [1; 5]. The reliance on word embeddings for
this purpose, however, comes with certain limitations. Most prominently, word embeddings cannot
straightforwardly differentiate between senses. For emotion analysis, this is evidently problematic
since different senses of one and the same word can vary regarding their emotional connotation
(e.g., ‘awe-inspiring’ vs. ‘disgusting’). The main challenge in the current state-of-the-art lies in the
lack of frameworks that model emotional evolution at a sense-specific level, bridging the relation-
ship between polysemous meaning and emotion. Such a framework would be needed, however, to
fully understand the emotional evolution of words [9].

To address this gap, we introduce EmoTracker, a novel framework that integrates diachronic
sense modeling with temporal emotion analysis based on the Valence–Arousal–Dominance (VAD)
model [36; 45] that captures three emotional dimensions (Valence: negative—positive; Arousal:
calm—agitated; Dominance: submissive—dominant). Our contributions to computational human-
ities research are threefold: (1) we propose the first automatic method for constructing diachronic
sense-informed VAD datasets by aligning historical sense distributions [18] with established con-
temporary VAD lexicons (NRC-VAD [33], Warriner [45], MEmoLon [6]); (2) we develop an
LSTM-based forecasting model augmented with attention mechanisms and momentum-based fea-
tures [29], which capture temporal changes in the emotional state, to predict future VAD trajecto-
ries, introducing a novel predictive capability for affective language evolution; and (3) we build a
REST API and interactive interface that features 2D VAD and sense time series, 3D emotion-over-
time plots and 4D visualizations that capture the diachronic joint evolution of emotions and senses
in the VAD space.

We structure our work around the following research questions:

RQ1: How can we construct diachronic, sense-informed VAD datasets without manual annotation
by systematically integrating temporal sense distributions with static contemporary VAD
lexicons?

RQ2: How effectively can predictive models forecast future emotional shifts using enhanced
LSTM-based architectures with temporal features?

RQ3: How can we design interactive visualizations to explore historical and forecasted emotional
trajectories in multidimensional VAD space representations?

EmoTracker presents a reproducible and extensible framework that unifies diachronic semantics
and affective modeling. We provide all data, open-source infrastructure and a complete replica-
tion package1, facilitating adoption by computational humanities researchers to investigate how
emotional meaning evolves with language over time. Upon publication, the data and code will be
made available through an institutional research data repository.

2 Related Work
While diachronic sensemodeling and emotion analysis have each developed robust methodologies,
these fields are often treated independently. As a result, we lack frameworks that jointly capture
how word senses and their emotional associations co-evolve over time. EmoTracker addresses
this integration gap by linking temporal sense distributions with affective modeling, enabling new
insights into diachronic language dynamics.

The past 15 years have seen considerable advances in the study of semantic change, initially
driven by efficient ways of generating static embedding representations for large sets of words
based on historical corpus data [26; 38; 41]. In these approaches, semantic change is often opera-
tionalized by measuring shifts in a word’s embedding over time or that of its semantic neighbors
1 Replication package: https://github.com/mtiessler/EmoTracker
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[7; 13]. However, it has been proved that similarities between embeddings are sensitive with re-
spect to frequency of occurrence so that this confound needs to be controlled for when studying
semantic change [10]. Moreover, while such approaches implicitly capture the semantic neighbor-
hood of a word, they typically lack detail about the evolution of a word’s different senses. For this,
word-sense disambiguation approaches are necessary. Such approaches often rely on clustering
token-level embeddings [12; 42] or developing sense-disambiguation models that are trained on
sense-annotated historical data [39].

In a related approach, Hu et al. [17] employ sentence embeddings derived with BERT from
historical sense-specific example sentences that were taken from the Oxford English Dictionary to
implement a pipeline that can disambiguate between word senses in historical English text data.
Their pipeline was then used to predict a word’s senses and derive their respective frequency of
occurrence in the Corpus of Historical American English, spanning the 19th and 20th century. For
each word and each period they thus provided a probability distribution over all its senses.

Their data were used to predict under what conditions words becomemore polysemous [2], and
Kali et al. [23] use a similar pipeline to infer sense-specific data in order to examine predictors of
word-sense decline. Making predictions, however, is disputed in historical linguistic research [37].
Language change is often seen as erratic and governed by a too complex set of interacting factors,
to the effect that some scholars even argue that diachronic linguistics should not be a predictive
science (see discussion in [37] and [44]). Still, predictive modeling techniques have been explored
in the field [43]. Our approach contributes to this agenda by reconstructing and forecasting the
emotional semantics of words, which is an important step for anticipating and studying shifts in
public sentiment, detect emerging connotations, and support cultural and linguistic analysis over
time.

Diachronic emotion analysis has applications in diverse domains such as literary studies [1;
28], but also economics [3] or public health [32]. In historical linguistics, research on lexical ame-
lioration and pejoration is well established. Connected to this, Morin and Acerbi [34] revealed a
decrease in positive terms in historical English texts, which is in line with pejoration cycles ob-
served in lexical change, in which words tend to obtain more negative senses to the effect that they
are replaced by more positive ones; cf. toilet vs. bathroom [15]. Interestingly, this is contrasted by
the observation that speakers tend to use more positive than negative words, a phenomenon known
as ‘linguistic positivity bias´ [19].

To study phenomena like this, it is essential to have information about emotional status of words
not only now but also for language stages several decades or centuries ago. In addition, such data
should be ideally available for large sets of words. Cook and Stevenson [9] draw on PMI-based
similarity of words to a pre-defined set of seed words in order to historically reconstruct lexical
valence. Seed words, in this context, are words like good or death that are supposed to have had
stable emotional semantics throughout the observation period. The reconstructed valence scores
were then used to study pejoration and amelioration dynamics. Similarly, Fonteyn andManjavacas
[11] use embedding-based similarity together with a set of positive and negative seed words.

In a more general approach, Buechel et al. [5] use word embeddings to regress historical va-
lence, arousal, and dominance scores (VAD) from seed words. The integration of the dimensions
of arousal and dominance was particularly welcome given that dimensional approaches to mod-
eling emotion have a long tradition [36] and that interactions between the three dimensions are
well-known in cognitive research [16; 45]. Reconstructed scores were tested against a manually
created gold-standard dataset.

While the requirement of creating a historically stable set of seed words could have been be
relaxed [14], the reconstruction of emotion scores based on similarities among word embeddings is
not without problems. For one, similarities betweenword embeddings can be affected by frequency
[10], as discussed above. More severely, emotional properties of individual word senses cannot be
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examined in this way. It was shown that annotators tend to only consider the prototypical, i.e., most
common, sense in concreteness labeling tasks [35]. Applied to emotion analysis, this could mean
that the emotional meaning of a less common sense is not well reflected in aggregated emotion
scores, and such errors would be propagated through static word embeddings. In our approach, we
infer sense-specific emotion scores from all sense descriptions associated with a word written in
contemporary English [46] and in this way effectively circumvent the problems that come along
with transferring emotional semantics via embedding similarities.

3 Methodology
We propose EmoTracker, a unified framework for modeling sense-informed emotional trajectories
over time. Built on an adapted CRISP-DM process model [40] and illustrated in Figure 1, our
methodology integrates diachronic sense modeling with temporal emotion tracking to capture how
emotional meaning evolves across word senses.

The research method comprises six stages: (1) automatic dataset construction, aligning tem-
poral word sense distributions with three VAD lexicons (NRC-VAD, Warriner, MEmoLon); (2)
dataset evaluation, using a gold-standard diachronic emotion dataset [4] for quality assessment;
(3) neural model training, employing an own designed LSTM-based architecture with momen-
tum features and temporal attention [24]; (4) model evaluation, measuring predictive accuracy
across VAD dimensions; (5) API design, exposing a REST interface for VAD trajectory forecast-
ing; and (6) interactive visualization, enabling human-in-the-loop exploration of emotional and
semantic change.

Figure 1: Workflow for developing the EmoTracker framework, showing the complete pipeline
from dataset generation to deployment, with integrated feedback loops for iterative improvement.

A core strength of this methodology is its built-in flexibility. If an evaluation step results are
unsatisfactory, users can re-execute the pipeline with alternative lexicons, allowing for iterative
refinement and increased robustness of the constructed datasets.

One of the main outcomes of this design is a fully reproducible research package. EmoTracker
includes all source code, datasets, trained models, and deployment configurations, enabling repli-
cation of the entire pipeline or individual stages. The full package is openly available via the
EmoTracker repository.
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3.1 Diachronic VAD Dataset Construction

At the time of writing to the best of our knowledge, no existing models were capable of performing
VAD inference based on word-sense distributions, which required us to develop a new approach.
However, training such a model requires appropriate data, which was also not available. While
the current dataset landscape offers comprehensive diachronic sense data from 1830 to 2010, VAD
lexicons remain temporally fragmented and limited to individual time points. This can be seen
graphically in Figure 3 in Appendix C,

To address this gap, and given the lack of gold-standard temporal sense VAD datasets, we
developed a novel method to construct large-scale diachronic sense VAD datasets. Our method
consists of the following three reproducible steps:

1. Data Integration: Our datasets were created by integrating two main sources:

(a) Diachronic sense proportions, p(si, t), derived from a sense modeling dataset [18],
where p(si, t) denotes the proportion of sense si used at time t. The probability dis-
tributions over senses in this data set have originally been generated for 3,220 pol-
ysemous words by applying a sense-disambiguation model trained on sense-specific
example sentences taken from the Oxford English Dictionary (OED) to a diachronic
text corpus (Corpus of Historical American English) layered into decades (see [17] for
details).

(b) Three established VAD lexicons serving as sources for static 3-dimensional Valence
Arousal Dominance (VAD) vectors: (1) The NRC-VAD lexicon [33], (2) TheWarriner
lexicon [45], (3) The MemoLon lexicon [6].

2. Deriving Sense-Specific VAD (V ADsense(si)): For each individual word sense si, we com-
puted a fixed 3-dimensional VAD vector. This process involved identifying the keywords
surfacing in the chosen VAD lexicon within the sense’s lexicographic OED-definition and
retrieving their corresponding 3D VAD vectors from the respective lexicon [46]. Crucially,
sense definitions are written in contemporary English, enabling the use of a contemporary
VAD lexicon. The final vector for the sense, V ADsense(si), was derived by computing the
element-wise average of these keyword vectors:

V ADsense(si) =
1

|Ksi |
∑

k∈Ksi

V ADkeyword(k)

where:

• Ksi is the set of keywords associated with the sense si,

• V ADkeyword(k) is the 3-dimensional VAD vector for keyword k from the lexicon.

3. Calculating Diachronic Word VAD (V ADword(w, t)): To determine the final VAD score
for a word w at a specific time t, we first define its set of constituent senses as Sw =
{s1, s2, . . . , sn}, where n is the total number of senses for that word. The time-specific
VAD score, denoted V ADword(w, t), is then calculated as a weighted average of the static
VAD scores of its senses, using the sense probabilities as weights:

V ADword(w, t) =
n∑

i=1

p(si, t) · V ADsense(si)

where:
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• V ADword(w, t) is the final, time-specific VAD vector for word w,
• p(si, t) is the proportion of sense si for word w at time t,
• V ADsense(si) is the static 3-dimensional VAD vector for sense si,
• n is the number of senses for word w.

This three-step method was applied to each of the three diachronic VAD lexicons, resulting
in separate diachronic VAD datasets, each containing reconstructed VAD values for all decades
from 1820 to 2010 for all words in the intersection of [18] and the respective static VAD lexi-
con: (1) EmoTracker-NRC, (2) EmoTracker-Warriner, and (3) EmoTracker-MemoLon. Each was
independently constructed using its respective lexicon as the source of static VAD values.

3.2 Datasets Evaluation

To assess the quality of our automatically constructed diachronic VAD datasets, we evaluated them
against the GoldEN VAD dataset [4], a manually annotated historical gold standard from circa
1835. This benchmark provides expert-validated VAD scores for English words and is well-suited
for temporal emotion analysis. The evaluation aimed to assess how closely our automatic VAD
estimates align with expert-annotated historical values, evaluate the reliability of our methodol-
ogy, and compare the performance of different lexicon sources in capturing historical emotional
meaning. The process involved several key steps:

1. Temporal Alignment: For each of our three datasets, we extracted VAD estimates for the
year 1835 to align with the gold standard temporal reference point.

2. Word Matching: We identified overlapping vocabulary between each constructed dataset
and the gold standard, focusing on words present in both sources to ensure a proper compar-
ison.

3. Scale Normalization: Given that our constructed datasets are on a [0,1] scale while the gold
standard uses a [1,9] scale, we applied adaptive min-max scaling to normalize value ranges.

4. Statistical Analysis: We computed multiple evaluation metrics for each dataset:

• Pearson correlation coefficients (r) for each VAD dimension and overall performance
• Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for error quantifi-
cation

• Statistical significance testing (p-values) to assess correlation reliability

This evaluation allowed us to determine which lexicon source provided the most reliable emo-
tional estimates in a diachronic setting.

3.3 Forecasting Model and Evaluation Framework

We frame the VAD trajectory prediction task as a time-series forecasting problem. The objective
is to estimate how a word’s emotional dimensions (i.e., Valence, Arousal, and Dominance (VAD))
change over time. We use diachronic VAD trajectories defined by the diachronic VAD scores
generated in the previous steps for this purpose.

Tomodel the long-term dependencies in emotional change, we use a Long Short-TermMemory
(LSTM) neural network. LSTMs are well suited for this task because they can retain information
across long input sequences, which is necessary to capture gradual changes inmeaning and emotion
[24].
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Each time step in the sequence is represented by 27 features. These include the three VAD
difference values (∆v, ∆a, ∆d) and 24 momentum-based features. The momentum features are
computed using eight different metrics across each of the three VAD dimensions. These metrics
come from financial time-series analysis and are adapted to treat VAD values like time-dependent
prices [8].

Although inspired by finance, our temporal setup is different. The dataset covers 39 time
points from 1820 to 2010, spaced at 5-year intervals. This resolution is achieved by interpolating
a diachronic sense dataset that originally had 10-year intervals.

Momentum features are calculated using sliding windows of 5 to 10 steps, which correspond
to 25 to 50 years. The model uses a lookback window of 15 steps (75 years) to predict VAD values
5 years into the future. This long input range is suitable for capturing the relatively slow pace of
emotional change.

All parameters, including window sizes and time resolution, can be modified in a configuration
file provided in the reproducibility package. The full list of momentum features is shown in Table 5
in Appendix B.

The architecture consists of a two-layer LSTMwith 128 hidden units, followed by a multi-head
attention mechanism with eight heads. This allows the model to focus on important parts of the
input history when making predictions. The network also uses layer normalization, dropout for
regularization [25], and GELU activation functions [27].

Training is performed for 100 epochs using the AdamW optimizer [30], along with regulariza-
tion techniques to reduce overfitting.

Model performance is evaluated both quantitatively and qualitatively. For the quantitative
evaluation, we use Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). For the
qualitative evaluation, we compare the forecasting behavior of models with and without momen-
tum features. As shown in Appendix E, Figure 4, the model with momentum features produces
smoother and more consistent forecasts that better reflect historical trends. In contrast, the version
without these features tends to produce noisier and less reliable predictions.

3.4 API and Visualization (EmoTracker Dashboard)

For visualizing the 3D trajectories and interpreting the model forecasting, we developed an in-
teractive frontend dashboard along with a lightweight REST API. The API provides a prediction
endpoint that accepts word and time horizon parameters, returning forecasted VAD trajectories
as JSON responses. The dashboard allows users to load any of the constructed datasets in the
dataset construction step, select target words, and visually analyze both historical and forecasted
VAD and Sense dynamics. The visualization features include (1) 2D time-series views for each
individual sense and VAD dimension to evaluate sense emotional historical trends in a word (Fig-
ure 6 in Appendix F); (2) 2D VAD time series multi-word comparison plots to contrast emotional
trends across different words (Figure 5 in Appendix F); (3) a novel 3D visualization of a word’s
trajectory through time in the VAD space (Figure 7 in Appendix F); (4) a 4D representation in-
corporating sense proportions as an additional visual dimension, where the fourth dimension is
encoded through color intensity (Figure 8 in Appendix F), which allows for analyzing the impact
that individual word senses have on the emotional trajectory; and (5) interactive controls for word
selection and forecast horizon adjustment.

4 Results
4.1 Construction of Reliable Diachronic Sense-Informed VAD Datasets

We evaluated our automatic dataset construction method against the historical GoldEN VAD gold
standard [4], using the 78 words shared between our constructed datasets and the gold standard as
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the evaluation set. As shown in Table 1, performance varied across the three datasets. EmoTracker-
NRC achieved the highest correlation with the gold standard (r = 0.287, p < 0.001), indicating
the strongest alignment with human-annotated VAD values. While EmoTracker-Warriner slightly
outperformed NRC in terms of error metrics (MAE and RMSE), we prioritize correlation as the
primary evaluation measure, as it directly reflects the preservation of emotional ranking and trends.
All correlations were statistically significant, suggesting that our automatic method effectively cap-
tures VAD patterns, even without human supervision and at large scale. However, it is important to
note that this evaluation is limited to a single historical reference point (1835), and does not assess
how well the model captures emotional trends over broader temporal ranges. This limitation con-
strains our possibility to generalize conclusions about long-term diachronic validity and remains
as future work.

Dataset Pearson’s r p-value MAE RMSE

EmoTracker-NRC 0.287 7.98×10−6 1.363 1.703
EmoTracker-Warriner 0.274 2.13×10−5 1.317 1.655
EmoTracker-MemoLon 0.179 0.006 1.600 1.931

Table 1: Evaluation results of constructed datasets against the GoldEN VAD historical gold stan-
dard. The best results per metric are shown in bold.

To provide a more fine-grained evaluation, we conducted a dimension-specific analysis, presented
in Table 2. The results reveal variability in correlation across the VAD dimensions. EmoTracker-
NRC achieved the highest correlations for Valence and Arousal, while Dominance proved
more challenging. Notably, EmoTracker-Warriner achieved statistically significant correlations
across all three dimensions and yielded the strongest performance for dominance. In contrast,
EmoTracker-MemoLon demonstrated weaker performance overall, with only valence showing a
significant correlation.

Dataset VAD Dimension Pearson’s r p-value

EmoTracker-NRC
Valence 0.389 4.39×10−4

Arousal 0.339 0.002
Dominance 0.094 0.412

EmoTracker-Warriner
Valence 0.249 0.028
Arousal 0.292 0.009
Dominance 0.280 0.013

EmoTracker-MemoLon
Valence 0.224 0.048
Arousal 0.172 0.131
Dominance 0.156 0.173

Table 2: Dimension-wise correlation analysis across all EmoTracker datasets. The highest Pear-
son’s r value for each VAD dimension is shown in bold.

These findings are further supported by the error metrics presented in Table 1, where EmoTracker-
NRC exhibited the lowest MAE and RMSE, indicating stronger overall reliability. Taken together,
the results suggest that our dataset construction method effectively enables automatic, large-scale,
and sense-aware VAD labeling over time, thus addressing RQ1.

The final EmoTracker-NRC dataset comprises 2,935 unique words and 13,916 sense-level def-
initions, spanning 39 temporal steps from 1820 to 2010 in 5-year intervals, resulting in a total of
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125,580 VAD entries. These words represent 5.36% coverage of the original NRC VAD lexicon
(2,935 out of 54,801 entries). The dataset was split chronologically, with data up to 1980 used for
training and data from 1985 onward reserved for validation. This split results into 52,830 training
sequences (78.3%) and 14,675 test sequences (21.7%), covering all 2,935 unique words in both
sets. This volume and temporal granularity ensure sufficient data diversity and historical depth to
support effective LSTM training and generalization. Not only does the dataset offer enough se-
quence coverage for training and testing, but its temporal breadth also extends existing diachronic
VAD resources.

4.2 Predictive Modeling of Emotional Trajectories

We evaluate the performance of our LSTM model in forecasting VAD trajectories across time. As
shown in Table 3, the model achieves low mean absolute error (MAE) and root mean square error
(RMSE), indicating strong predictive accuracy across the full vocabulary.

Metric Value

MAE 0.013
RMSE 0.015
Training Loss 0.008
Validation Loss 0.012

Table 3: Overall performance metrics of the LSTM model on VAD trajectory forecasting.

Appendix G presents histograms of MAE and RAE values for all words in the EmoTracker-NRC
dataset. These distributions are right-skewed, indicating that the model performs exceptionally
well for the majority of words.

Table 4 reports how forecasting performance varies over different time horizons. As expected,
prediction error increases with forecast distance. Nevertheless, the model maintains reasonable
accuracy even at a 20-year horizon, which is suitable for tracking long-term diachronic semantic
and emotional change.

Forecast Horizon MAE RMSE Pearson’s r p-value

5 years 0.011 0.013 0.821 <0.001
10 years 0.016 0.021 0.734 <0.001
15 years 0.024 0.032 0.642 <0.001
20 years 0.035 0.047 0.531 <0.001

Table 4: LSTM forecasting performance across different time horizons. Correlation remains sta-
tistically significant even for long-term predictions.

Forecasting accuracy degrades graduallywith longer time spans but retains sufficient predictive
power for long-term applications.

A deeper analysis of the best and worst forecasted words is available in Appendix H. As ex-
pected, forecasting works best when emotion trajectories do not exhibit a lot of change. Perfor-
mance is good, however, also for more complicated dynamics. For a qualitative perspective, we
selected three representative words: body (stable emotional trajectory), gay, and alien (both ex-
hibiting semantic shift). Table 6 in Appendix D compares the predicted and actual VAD values
over five-year intervals.
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The model shows near-perfect accuracy for stable emotional trajectories (body) and captures
both direction and magnitude of semantic shifts for dynamic words (gay, alien). These results
confirm that the EmoTracker LSTM model effectively captures diachronic VAD trends and thus
addresses RQ2.

4.3 Visualizing Temporal Emotion Dynamics

To address RQ3, we designed and implemented an interactive visualization interface to explore
diachronic emotional and semantic change. The EmoTracker Dashboard, introduced in Section 3.4,
provides an interactive platform for exploring sense-informedVAD trajectories over time. Through
a lightweight API and an intuitive user interface, the system allows users to load the EmoTracker
constructed datasets, forecast trajectories, and explore the emotional evolution across different
words and senses.

The dashboard supports a diverse set of visualizations: (1) individual and multi-sense 2D VAD
time-series plots to track emotional and sense temporal patterns (Appendix Figures 6 and 5); (2)
a novel 3D visualization of word trajectories through VAD space over time (Figure 7), which
provides an intuitive spatial representation of how emotions evolve diachronically; (3) another
novel 4D visualization that incorporates sense proportions as a dynamic fourth dimension, encoded
through color intensity (Figure 8); and (4) interactive controls for word search, forecast horizon
adjustment, and multi-word comparison.

These multidimensional visualizations offer a novel approach to emotion and sense modeling,
allowing the exploration of complex VAD trajectories that are difficult to capture with traditional
2D plots or static time-point visualizations, while supporting deeper diachronic cultural and lin-
guistic analysis.

5 Discussion
This paper presented a unified framework for modeling and forecasting the evolution of the emo-
tional connotations of words over time. Our contributions are threefold. First, we introduced a
method for constructing large-scale, diachronic, sense-informed VAD datasets by integrating tem-
poral sense distributions with static affective lexicons. Second, we developed an LSTM-based
forecasting model, augmented with momentum features and temporal attention, that effectively
predicts long-term emotional trends. Third, we designed a visual analytics interface to explore and
interpret emotion-sense trajectories through intuitive 2D, 3D, and 4D visualizations.

While our findings confirm that the EmoTracker pipeline produces meaningful and inter-
pretable affective forecasts, several limitations must be highlighted. The most significant threat to
validity is the scarcity of diachronic, human-annotated VAD datasets. Our evaluation relies only
on the GoldEN VAD dataset from 1835, leaving the remainder of the historical timeline without
direct human supervision. This raises the risk of overfitting to a single temporal benchmark and
underscores the need for gold-standard annotations spanning multiple periods to ensure temporal
validity. Although our quantitative evaluation shows statistically significant correlations with
gold-standard values, the lack of multi-period validation limits claims of general accuracy across
time. This limitation highlights the need for richer gold-standard datasets that span multiple
time periods. EmoTracker is already designed to easily integrate such data, enabling retraining
and fine-tuning without modifying the model or implementation. With future expert-annotated
datasets across historical periods, the framework will more accurately capture genuine historical
shifts in emotion and reduce patterns arising from modeling bias.

Additionally, the performance varied across the VAD dimensions. Dominance proved to be the
most difficult to model, likely because of inconsistent lexicon coverage and conceptual ambiguity.
Additionally, our approach may inherit biases from contemporary English definitions and static
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lexicons that do not reflect historical affective norms, potentially introducing anachronistic emo-
tion scores; further validation is needed to assess historical accuracy. Lexicon choice also had an
impact on the results, with NRC-VAD showing stronger overall alignment but Warriner perform-
ing better on some error metrics. These differences highlight the importance of lexicon selection
in diachronic emotion modeling. Finally, our framework evidently depends on the availability
of sense-distribution data (here: [17]). Current efforts in collecting diachronic sense-annotations
[39] are highly relevant in this regard. Such efforts are particularly important in order to extend
diachronic emotion analysis to languages other than English and German [5].

Our contribution adds to the discussion about the predictive nature of language change [37; 43]
by introducing state-of-the-art forecasting techniques for studying language change. Importantly,
however, EmoTracker is not only useful for making predictions; it can also support hypothesis
generation in historical and cultural studies. For example, the decline in valence for the word gay
from the 1900s to the 2000s reflects both a change inmeaning and broader social and cultural shifts.
By linking changes in word meaning with emotional trends, EmoTracker opens new possibilities
for research in cultural analytics, historical linguistics, and the digital humanities. Its forecasting
feature can also help researchers identify potential future changes in culture and emotion by pre-
dicting how the emotional tone of words might evolve over time. Likewise, the framework can
be adapted for the task of forecasting backwards in time or interpolation for periods for which
insufficient historical data are available.

Finally, our interactive dashboard allows an exploratory analysis of word trajectories, making
diachronic affective trends more interpretable and accessible. However, while promising, the us-
ability and impact of these visualizations remain to be evaluated in applied humanities research
settings.

6 Conclusions
We presented EmoTracker, a framework for modeling and forecasting the co-evolution of word
meaning and emotional connotation over historical time. By integrating temporal sense modeling
with affective lexicons and neural forecasting, EmoTracker enables scalable, sense-informed VAD
analysis at a diachronic scale.

Our findings highlight the potential of this approach, but also underline key challenges, in-
cluding limited gold-standard data and sense-specific resources. Despite these constraints, the
framework provides a reproducible foundation for exploring emotional meaning evolution over
time.

Looking ahead, future work includes exploring more advanced forecasting models, such as hi-
erarchical LSTMs, Transformer-based architectures, and fine-tuned large languagemodels (LLMs)
for sense-level emotion prediction. Creating expert-annotated diachronic VAD datasets across
time would strengthen evaluation and reduce reliance on static resources. The framework can also
be extended to multilingual and domain-specific contexts, and its dashboard evaluated for inter-
pretability in applied humanities research.

EmoTracker’s approach to diachronic emotion evolution not only provides a more holistic
framework for emotional and semantic analysis but also establishes a foundation for future inter-
disciplinary research between NLP, computational humanities, and cultural temporal analysis.
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A LSTM model architecture

Figure 2: EmoTracker’s LSTM architecture, combining momentum features, a 2-layer LSTM
core, multi-head attention, and dense output layers for VAD prediction.
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B Momentum Features Used in Forecasting

Feature Description

Velocity [31] The slope of a linear regression over the lookback window, indicating
the trend’s direction and speed.

Acceleration [31] The second derivative, capturing the rate of change in velocity.

Trend Strength × Direction The R-value from the linear regression, weighted by the trend’s di-
rection to measure consistency.

Volatility The standard deviation of values in the window, measuring uncer-
tainty and variability.

Momentum Oscillator [20] The most recent change relative to the historical volatility within the
window.

Relative Strength [21] A comparison of the average value in the first half of the window
versus the second half.

Range Position The position of the current value relative to the historical minimum
and maximum in the window.

EMA Ratio [22] The ratio between a short-term Exponential Moving Average (EMA)
and a longer-term Simple Moving Average (SMA) to identify trend
crossovers.

Table 5: Description of Momentum Features Used in Forecasting
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C Current Available Datasets

Figure 3: Integration of sense modeling and VAD lexicon resources (NRC-VAD, Warriner, Mem-
oLon) in EmoTracker datasets.
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D Predicted vs. Actual VAD Values

Valence (V) Arousal (A) Dominance (D)

Word Year Predicted Actual Predicted Actual Predicted Actual

Stable trajectory word (minimal semantic shift)

body 1990 0.1612 0.1612 −0.1780 −0.1779 0.0702 0.0703
body 1995 0.1623 0.1624 −0.1775 −0.1774 0.0728 0.0730
body 2000 0.1636 0.1636 −0.1771 −0.1770 0.0756 0.0757
body 2005 0.1654 0.1655 −0.1770 −0.1770 0.0790 0.0792
body 2010 0.1675 0.1675 −0.1771 −0.1770 0.0827 0.0828

Dynamic trajectory words (significant semantic shift)

gay 1990 0.3233 0.3168 −0.2561 −0.2565 −0.1010 −0.1005
gay 1995 0.2669 0.2518 −0.2349 −0.2317 −0.0922 −0.0897
gay 2000 0.2009 0.1868 −0.2094 −0.2070 −0.0808 −0.0790
gay 2005 0.1337 0.1074 −0.1841 −0.1767 −0.0700 −0.0658
gay 2010 0.0539 0.0281 −0.1532 −0.1464 −0.0564 −0.0526

alien 1990 −0.1864 −0.1881 0.1286 0.1273 −0.1014 −0.1017
alien 1995 −0.1848 −0.1771 0.1202 0.1133 −0.0943 −0.0877
alien 2000 −0.1625 −0.1661 0.0977 0.0993 −0.0733 −0.0737
alien 2005 −0.1489 −0.1275 0.0853 0.0697 −0.0580 −0.0419
alien 2010 −0.0935 −0.0888 0.0447 0.0401 −0.0167 −0.0102

Table 6: Predicted vs. actual VAD values for representative words across time.
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E Qualitative Comparison LSTMModel

(a) Forecast with momentum features

(b) Forecast without momentum features

Figure 4: Comparison of VAD trajectory forecasting for the word ”gay” in 2040 using models (a)
with and (b) without momentum features.

779



F EmoTracker Dashboard Views

Figure 5: Valence trajectory comparison for gay and alien, showing historical shifts.

Figure 6: 2D time-series view of alien’s VAD (solid) and sense (dotted) evolution.
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Figure 7: 3D visualization of alien’s VAD trajectory. Darker path = historical, lighter = forecasted.

Figure 8: 4D visualization of emotion evolution. Color intensity encodes sense proportions.
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G MAE and RMSE Distribution Analysis

Figure 9: Distribution of MAE across all forecasted words. Median = 0.0081, Mean = 0.0133.
The right-skewed shape indicates strong performance for most words.

Figure 10: Distribution of RMSE across all forecasted words. Median = 0.0093, Mean = 0.0150.
The right-skewed pattern supports the model’s high accuracy for the majority of cases.
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H Case Studies of Best- and Worst-Performing Words

Figure 11: Top-performing words based on lowest MAE. These words exhibit high alignment
between predicted and actual emotional trajectories.

Figure 12: Top-performing words based on lowest RMSE. These words show highly stable and
accurate predictions over time.
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Figure 13: Worst-performing words by MAE. Errors suggest these words may exhibit irregular or
complex semantic shifts.

Figure 14: Worst-performingwords by RMSE. Large prediction deviationsmay reflect ambiguous
or noisy VAD histories.
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