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Abstract

The Digital Humanities can nowadays benefit from easily accessible tools and pretrained
models. Questions remain about the adequation between the data used to train these models
and the task data. For a task like Named-Entity Recognition, domain specificity expresses
itself not only in the linguistic domain but also in the entities of interest. While fine-grained
entity tagsets are valuable, they are harder to annotate, leading to smaller, less representative
training data, and may also be less interoperable with other NER label sets. In this work, we
introduce a new fine-grained NER dataset for early modern Dutch texts related to the Dutch
East India Company, covering 15 NER tags and 8000 mentions. We show that training a
language model on the task data improves NER performance compared to off-the-shelf mul-
tilingual pretrained models. We further introduce a new method, class-agnostic co-training,
to augment training data with existing NER datasets from the same domain, but with more
restricted tagsets. We demonstrate that this method improves performance for augmented
tags while increasing overall precision. Our annotations and code are publicly available.!

Keywords: Dutch historical domain, named-entity recognition, pretrained language models,
data augmentation

1 Introduction

Named Entity Recognition (NER) is a well-understood task, but one that is difficult to apply, as
it is domain sensitive, both in terms of source text and of target labels. Tools such as spaCy [9]
and GLINER [29], while they lower the barrier for non-specialists to apply machine learning tech-
niques, are of limited practical applicability to historical and literary sources, as they are trained
on modern news sources, and only provide generic labels.

Pretrained language models [4; 21] form a better starting point for domain-specific applica-
tions, as transformer encoders [24] can notably be finetuned to predict NER classes at the token
and subtoken levels. For the historical domain, one can directly apply multilingual models such as
mBERT [4] or XLM-RoBERTa [3], which have been shown to generalise well to other languages
for various tasks [28], or models trained on historical data [17; 18]. Resources permitting, one can
adapt language models to the source domain by continuing pretraining [8], or directly training a
model on the task data [7].

However, finetuning pretrained language models still requires annotated data for training. This
in turn requires domain-trained annotators and time and effort to refine guidelines and produce
annotations. Refining tagsets for specialised domains increases the task’s complexity, reducing
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the final amount of annotated data for a given time budget. Although data augmentation tech-
niques [10; 27; 30] can be used to increase training data, one would also want to reuse annotations
beyond their application within a given project. In this work, we consider how to augment fine-
grained training data with existing NER data from the same domain but with a more restricted
tagset. We propose to co-train a NER model with external data by adapting the loss computation
to make the model agnostic to task-specific tags when facing sequences from the external data. We
call this method class-agnostic co-training. We show that this method performs well, improving
model performance on augmented NER tags, while preserving the performance on task-specific
tags.

The domain we consider in this work is that of texts produced by the Dutch East India Com-
pany (VOC) in the seventeenth and eighteenth century. Specifically, we work with the collection
of the Overgekomen Brieven en Papieren (Letters and Papers Received, OBP) of the VOC [6],
which consists of nearly 4.8M scans of hand-written text processed with Loghi [13]. The linguis-
tic characteristics of these documents differ from those of contemporary Dutch in the sense that
orthographic conventions and grammar were not yet standardised, sentence structures were often
long and convoluted, and the meaning of words could shift depending on historical and colonial
context. Nevertheless, the corpus’s discourse is relatively consistent. Originating from a single
administrative entity (the VOC), the documents revolve around a recurring set of administrative
and commercial topics, including trade, logistics, personnel, finances, and enslavement.

The standard NER categories (among others, Person, Location, and Organization) are insuffi-
cient to capture the full range of information relevant to the VOC archive and colonial discourse
more broadly. To adequately support research on trade, governance, and daily life in the early
modern colonial world, a historical NER model must also be able to identify entities such as com-
modities, units of measurement, and ships, as well as finer-grained personal identifiers such as
status or profession. This expansion of entity types contributes towards a better understanding of
such corpora, making it easier for researchers to contextualise and reconstruct semantic and in-
stitutional structures embedded in the text, besides offering a useful aid on the surface level for
terms and references once linked to knowledge bases and vocabularies. In this paper, we present
the annotation process leading to a new NER dataset with 15 entity labels and close to 8000 entity
mentions for early modern Dutch and the Dutch East-India Company domain.

Multilingual pretrained encoder models form a good basis for historical Dutch [2; 14; 20] and
serve as baselines in this work. We compare models of different sizes to trade off performance
and computational cost: while larger models are expected to perform better, they would lead to
higher inference costs on the full OBP corpus. In addition, as [8] point to the benefit of adapting
language models to the target domain and task data, we also experiment with a model trained on
the OBP corpus, gloBERTise [26]. We find that finetuning this model for NER outperforms larger
models such as multilingual BERT-base [4] and XL.M-Roberta-Base [3], being competitive with
the 4-times larger XLM-Roberta-Large.

There exist several NER datasets for the VOC data or Dutch historical texts of the same pe-
riod [2; 14; 20] that could serve as augmentation data. Leveraging other datasets is difficult in
practice, as datasets differ in the size of the label set and in the definition of entity types. When
datasets are not built from the same source, this also leads to differences in context for entities [5].
We expect that the datasets of [2; 20], which both overlap with the OBP corpus and have annota-
tion guidelines closer to [14], are close enough in terms of the source domain and that, therefore,
their tagset can be seen as a subset of ours. We focus on the voc-gm-ner dataset of [2], which
uses 6 of our 15 tags. We present data-augmentation experiments where we compare the effect of
adding task-internal training data to adding data from the voc-gm-ner dataset. We show that our
class-agnostic co-training method yields improvements even as more task-internal data become
available.
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2 Annotations
2.1 Data selection

The corpus consists of a subseries within the VOC-archive, the OBP. This series consists of docu-
ments in a variety of genres, including but not limited to letters, court cases, and cargo lists. We use
the HTR-transcriptions of the corpus published by the GLOBALISE project [6]. We selected 26
documents for annotation, spanning from 1618 to 1782. During selection, HTR quality was taken
into account. We selected documents where the layout recognition had performed well, meaning
that headers, paragraphs, and marginalia were clearly separated in the resulting machine-readable
text. The overall quality of the HTR was deemed very high, suitable for manual reading and auto-
matic processing.

2.2 Annotation task

The label set for this annotation task consists of fifteen labels describing seven larger entity types:
persons, locations, organizations, polities, commodities, ships, and documents, as well as dates
(see Table 1 for an overview including descriptions of each entity type). This label set was devel-
oped in collaboration with domain experts. The reasons to extend the label set beyond the more
common categories of Person, Location, and Organisation are twofold. First, the set of entities
considered is expanded to include other entities of historical significance, such as documents, com-
modities, and ships. The labels DOC, CMTY_NAME, CMTY_QUAL, CMTY_QUANT, and SHIP were added
to cover these additional entities. Second, additional labels are added to cover unnamed instances
of various entities, particularly persons. This is done in an effort to compensate for the colonial
imbalance in the corpus, since colonial subjects are less likely to be mentioned by name and are in-
stead often referred to by their status, title, or profession [16]. The labels PRF, STATUS, PER_ATTR,
and ETH_REL can cover such unnamed instances of people in the corpus. In doing so, they provide
an additional entrypoint for researchers to locate these individuals.

The labels are mutually exclusive, any span can only be annotated with a single label. Com-
positional references are split into sequences, see examples (1) and (2).

@8] [Mousabeeck]per Name, [Ambassadeur]pry den [Conincks]prr van [Persia]Loc_NAME2

(2)  een[deenslioc_apy [comp,slorg [scheepjelsuip TypE>

2.3 Annotation process

The INCEpTION platform was used for annotation [12]. All annotations were made by historians
with prior familiarity with the corpus or similar corpora. Analysis of an initial pilot annotation
round of annotations with four annotators led to a reduction in entity labels from 21 to 15. This
was achieved by reducing the number of fine-grained person related labels by combining them, as
well as removing the distinction between locations and polities (similar to GPE). The results of this
pilot annotation round are not included in the subsequent analysis of this paper. In all subsequent
annotation rounds annotators worked in pairs, allowing annotators to discuss difficult cases and
cross-check each others work within the annotator pairs.

These changes, as well as further clarifications in the annotation guidelines* led to improve-
ment in label agreement from about 80% to 90%, even with the introduction of new annotators.
Disagreement persists in cases where distinction between labels requires specific domain knowl-
edge and cannot be derived from linguistic context alone. For instance, in the following example

2 Musa Beg, Ambassador to the King of Persia
% a small Danish comp[any] ship
4 Guidelines are included in the data and code repository, https://github.com/globalise-huygens/finegrained-hist-ner
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Table 1: Label set with corresponding entities

NER label Description Related entities

PER_NAME Name of person persons
PRF Profession, title persons
STATUS (Civic) status persons
PER_ATTR Person attributes persons

(other than PRF or STATUS)
LOC_NAME Name of Location locations, polities
LOC_ADJ Derived form of Location name persons, any

(through qualification)

ETH_REL Ethnic, religious or ethno-religious persons, any

appellation, not derived from location name (through qualification)
CMTY_NAME  Name of Commodity commodities
CMTY_QUAL Commodity qualifier: colors, processing commodities
CMTY_QUANT Quantity commodities
SHIP Ship name ships
SHIP_TYPE Ship type ships
ORG Organisation organisations, polities
DATE Date dates
DOC Document documents

(3) Samarijnsche refers to Zamorin, the title of the ruler of Calicut (label PRF). However, if this
is not known, it can easily be confused with an adjectival form of a location (label LOC_ADJ).
Similarly, the ETH_REL and LOC_ADJ labels can be easily confused. See examples (4) and (5):
Tidoorsche is a derived form of Tidore, an island and polity in what is now eastern Indonesia;
Alfoerese, does not refer to a place but to a colonially applied ethnic category.

3) Het geheele Samarijnsche land®
4) Tidoorsche grooten
5) Alfoerese grooten

In order to reduce such confusion, annotators have access to glossaries and reference data relevant
to the corpus. Additionally, all documents are checked by a designated curator for final quality
control.

3 From annotations to training data
3.1 Preprocessing

Data are pretokenised with spaCy (n1-core-news-1g model) [9] prior to annotating. For training,
as the model does not allow for a reliable sectioning of text into sentences, due to the irregular
use of punctuation in these historical texts, long passages are segmented into sequences by their
number of tokens. We found that a maximum length of 240 tokens was enough to ensure that the
data would remain within a length of 512 subtokens for the XLLM-Roberta tokenizer. As all tested
pretrained models have a smaller or same-sized vocabulary, we assume that this limit is adequate
for them too. For simplicity’s sake, the data are preprocessed with this maximum token length for
all data and all pretrained-model tokenizers. Finally, span-level annotations are converted to IOB
token-level labels [23].

> the entire Zamorin land

921



train A train B

600 -
500 -
400 -
300 -
200 -
100 - I
il
validation test
200 -
150 -
100 -
o- A m in I - n (1
\)’\,y\ P‘\x <% OC:?&L 'P*Oh ?@{\ P‘“\E??E@f\\ _{9(',‘\)‘5 \)’“\ 6 OC:?&» PQB @G‘(\ P“‘\E?"Ee‘\\ _{9?,‘\)‘5
G@ﬁog\;\\o “\{‘{ QV\\/’O O'C-/ o&S ?,%Q, \)\\ - oF 0\\;\\ \1\{\{ %‘(\\/,0 'C-/ o ?%?V \A

Figure 1: Entity distribution in data splits. The first training set A and the validation data have
similar distributions as they are sampled by sequence from the same first set of annotations and
so as to obtain median performance on the validation set. The B training set and the test set,
which are taken from a second set of annotations, are more dissimilar as they come from different
documents, containing less commodity-related annotations and more person-related annotations;
their distributions are also different from each other as they were split by document.

3.2 Data splits

The annotated data were produced and curated in successive rounds, and resulted into two sets of
annotations for this work: the first set of annotations was used for early experiments and validating
models, while the second set of annotations was used for evaluating the effect of internal data
augmentation and for testing.

The models were trained and validated on the first set of annotations. To allow for a repre-
sentative validation set within these data, we shuffled sequences in the data; folded them into 5
datasets with an 80%-20% training/validation split; finetuned XL.LM-Roberta-Base on the five re-
sulting datasets; and finally selected the split that led to median performance. The resulting data
subsets are referred to as train-A and validation henceforth.

The second set of annotations was used to provide additional training data and a heldout test
set. These are split by document to minimise possible overlap between training and test data. We
selected three documents for testing based on their size and entity distribution, aiming at a balanced
distribution and a size comparable to that of the validation data. The resulting splits are referred to
as train-B and test in what follows.

Entity type distributions in the resulting training, validation, and test sets are shown in Figure 1.
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3.3 Mapping entities to subtokens

Subtoken IOB tags are derived from token-level IOB labels as if by applying the IOB scheme
directly to span-level entity annotations: the first subtoken of the first token of an entity of type X
is labelled as B-X, and all other subtokens in the entity’s span are labelled as I-X. Subtokens of
O-labelled tokens are tagged as O. For instance, the sequence Sijbrandt Harmansz van Giever is
labelled as follows at the span level (annotations), token level (after tokenization by spaCy) and
subtoken levels (after tokenization by gloBERTise, see section 4):

span [Sijbrandt Harmansz]prr _name van [Gieverlioc NAME
token [Sijbrandt]gprr name [Harmansz]iper name [Vanlo [Gieverlp.roc NamE

subtoken [Sijlgprr name [_brandtliprr name [Harmanszliper name [Vanlo [Gielg.oc NnaME
[_verliLoc_NaME

Past training, subtoken predictions are reconstructed into span-level predictions following the
reverse operation: the predictions of token-initial subtokens are mapped to token-level predictions,
and these IOB tags are mapped to span predictions following a non-strict scheme: entities are
identified in principle by B-tags optionally followed by sequences of I-tags of the same type; I-
tags that follow on an O-tag are considered as also marking the start of an entity and reinterpreted
as B-tags.

3.4 Metrics

Training validation uses token-level F1 scores (micro, macro and weighted) as metrics, whereby
O-class true positives are ignored so as to prevent them from weighing out scores. F1 scores are
computed on token-initial subtokens only, to reflect final span-level computations more closely®.
Consequently, F1 scores are computed only on token-initial subtoken predictions for which at least
the predicted or the true label is not O.

Testing is performed at the entity-span level with seqeval [19], using the non-strict IOB2
scheme.

4 Finetuning pretrained language models for NER
4.1 Pretrained models

All models are based on pretrained transformer-encoder language models supplemented with a
token classification layer. We experimented with four multilingual models: multilingual BERT-
base [4], its distilled variant [22], and the base and large variants of XLM-Roberta [3]; we also
experimented with a pretrained language model, gloBERTise [25; 26], trained directly on the OBP
data, and based on RoBERTa [15]. We did not experiment with Gysbert [18]: while its training
data covers the historical period of the VOC, it includes more out-of-domain data through literary
texts. Therefore, we expected that it would perform less well than gloBERTise.

Models vary in the size of the tokenizer vocabulary, the number of attention layers, and hidden
dimensions as reported in Table 2.

4.2 Experimental setup

Models are optimised with Adam [11], using default parameters and adapting only the learning
rate. For XLM-Roberta-Large, the initial learning rate is 2~ for a batch size is 16; for the other
models, the initial learning rate is 4e~° for a batch size of 32. The learning rate is halved every

5 In contrast, loss is computed at the subtoken level.
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Table 2: Pretrained-model parameters and sizes

model vocabulary layers dimension parameters (M)

k) embeddings attention total
gloBERTise 50 12 768 40 85 125
dist-mBERT 120 6 768 92 43 135
mBERT 120 12 768 92 85 177
XLMR-base 250 12 768 192 85 277
XLMR-large 250 24 1024 257 302 558

time the token-level micro-F1 fails to increase for more than 3 epochs. All models are trained for
up to 40 epochs.

All experiments use the same single seed, except for model validation, where experiments with
two more seeds are added. For model validation, evaluation is based on the best average F1 (micro,
macro and weighted, respectively) over three seeds within 40 epochs. For testing, the initial seed
is used, conducting an evaluation on the checkpoint with the best micro-F1 within 40 epochs.

4.3 Model validation

Table 3 reports model performance based on the underlying pretrained language model, and aver-
aged over three seeds, selecting the epoch with the best average micro F1 for each model. Model
performance increases overall with model size, except for gloBERTise, which performs compa-
rably to the four-times larger XLM-Roberta-Large. We see here the effect of the gloBERTise
vocabulary being fit to the OBP data; this effect is also reflected by faster model convergence, with
the best results being reached after 15 epochs, against 29 to 40 for the other models.

Table 3: Validation scores for models trained on the train-A set, averaged over 3 seeds. The best
average metric scores are reported along with the epoch at which they were measured and with
standard deviation.

micro F1 macro F1 weighted F1
model epoch F1 std  epoch F1 std  epoch F1 std
gloBERTise 15 81.8 0.3 29 70.7 1.0 12 825 0.44
dist-mBERT 40 72.3 0.31 40 65.5 1.33 26 73.4 0.62
mBERT 29 77.6 0.83 29 69.5 3.56 29 783 1.07
XLMR-base 40 771 0.44 40 69.8 0.78 34 784 1.19

XLMR-large 36 81.1 1.37 22 721 184 39 81.7 1.56

The advantage of gloBERTise for our case carries out to unseen data as shown by the test
results in Table 4: even though the best XI.M-Roberta-Large model performs better overall than
the gloBERTise one on validation data, its performance is lower on the test data.

The good performance obtained with gloBERTise is encouraging, as it allows us to experiment
with a lighter model, leading to decreasing development, training, and inference times for our NER
model.
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Table 4: Pretrained-model comparison by validation (token and seqeval) and test seqeval scores
for best micro-F1 checkpoint (single seed).

validation token F1 validation segeval F1 test seqeval F1
model epoch mic. mac. weigh. mic. mac. weigh. mic. mac. weigh.
gloBERTise 15 81.7 70.0 822 82.2 783 821 66.6 60.8 64.2
dist-mBERT 39 723 653 73.0 720 674 725 53.6 48.3 52.0
mBERT 29 785 719 79.4 79.5 75.0 794 574 49.0 545
XLMR-base 28 781 714 785 79.1 745 78.9 55.1 48.6 50.5

XLMR-large 37 82.6 722 83.1 84.2 803 84.2 65.9 59.1 62.8

5 Data augmentation with unknown classes
5.1 The voc-gm-ner corpus

The voc-gm-ner corpus [1; 2] is textually close to the OBP-data: it is taken in part from the Generale
Missiven corpus, which is a subset of the OBP corpus; for the other part, it consists of 20th century
Dutch editorial notes and comments on the historical text. While this second part is not included
in the OBP corpus, it follows closely on it, notably mentioning entities that are relevant to the OBP.
The data set also differs from the OBP data in that it was derived from digitised OCRed texts,
whereas we work with HTR data.

When it comes to entity types, the version of the corpus provided for training (the datas-
plit_all_standard view of the corpus [1], which we refer to henceforth as vocgm for VOC Generale
Missiven) uses a subset of our label set, corresponding to the following types: ETH_REL, LOC_ADJ,
LOC_NAME, ORG, PER_NAME and SHIP. We assume at least that the entity types defined in the cor-
pus are close enough to our own definitions to be mapped directly to these labels. This leaves us
with nine entity types that are defined in our data, probably well represented in the vocgm data, but
labelled as non-entities O.

As the vocgm dataset is larger than ours (with about 18.7k training entity mentions against 3.9k
for train-A and 5.9k for the joint train-A and B sets), simply joining the training data would prevent
correct learning of these types, as their predictions would be penalised against O reference labels in
the vocgm data. To limit this effect, we experimented with both data selection and class-agnostic
co-training.

5.2 Selecting data by entity density

We experimented with selecting sequences with a minimum entity density, i.e. proportion of entity
tokens in a sequence. Enforcing a threshold on entity density decreases the size difference between
our data and the augmentation data, and might decrease the representation of unseen entities. Note
that this last hypothesis rests on an independence assumption of entity type occurrences, which is
likely to hold better for some types than others: it seems likely enough for commodity listings,
but not for letters where attributive types like PER_ATTR or SHIP_TYPE can be expected to occur
closely to PER_NAME and SHIP, respectively.

We experimented with two thresholds, 0.05 and 0.1, selecting vocgm sequences with at least
5% and 10% of entity tokens.

5.3 Class-agnostic co-training

To counteract the effect of unseen types in the vocgm dataset on the learning of these types, we can
consider that 0 annotations in the vocgm data are not truly representative of O classes, but of any
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Figure 2: Class-agnostic co-training. Generic entity labels are represented for brevity, but they
stand for corresponding B or I tags. The example vocgm training sequence contains a token, Radja,
that is tagged as O whereas the target tag should be PRF. As cross-entropy loss for that token is
computed against the model’s output for the O class, we want to report the softmax weight of the
target class PRF onto that of the O class to avoid penalizing true-class predictions. As the true
class cannot be known for a given vocgm O class, one reports the softmax weights of all vocgm-
unknown target classes to that of the O class for vocgm training sequences.

type in the union set of 0 and the vocgm-unknown 9 classes. To align the model with these reference
data, one can then make it equally agnostic, by reporting the probability mass of vocgm-unknown
types to the O class before computing the loss, as shown in Figure 2.

In practice, a mask of unknown classes is attached to vocgm sequences when adding them to
the training data (sequences from our annotations and vocgm data are shuffled through each other
in the training data, whereas the validation data consist only of OBP data). The output of the model
for these sequences is passed through a softmax to obtain class probability estimates, and the mask
is used to compute the sum of the unknown-class probability mass, which is then added to the
softmax value of the O class. Subsequently, instead of directly computing cross-entropy loss over
output logits for these sequences, one computes the negative log-likelihood loss over (the log of)
the recomputed softmax values.

5.4 Model validation

Table 5 shows that class-agnostic co-training generally improves model performance. Entity-
density selection has a small positive effect on its own, but micro F1 are lower than for the gloBER-
Tise baseline trained on the A training dataset only. In contrast, models with class-agnostic co-
training benefit from the addition of external data, and perform slightly better as more external
data is included. We adopt class-agnostic co-training with the full vocgm as setting for the follow-
ing external-data augmented experiments.

5.5 Data augmentation with task data and external data

As more annotations become available in a project, one can wonder if there is still benefit in aug-
menting data from external datasets. Validation experiments on task-internal data with the train-B
set and on vocgm-augmented data show that both kinds of data are beneficial to model performance,
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Table 5: Data augmentation of the train-A set with the vocgm training data. Effect of entity-
density threshold (edt) and class-agnostic co-training (cact) with gloBERTise on validation scores.
Training size refers to the number of entities.

training micro F1 macro F1 weighted F1

edt cact size(k) epoch F1 std epoch F1 std epoch F1 std

train A 3.9 15 818 0.3 29 70.7 1.0 12 825 044
0 no 22.6 33 80.8 0.31 33 726 1.19 33 832 0.26
0.05 no 19.3 20 814 0.33 25 734 3.5 10 83.5 0.98
0.1 no 12.5 18 81.3 0.49 34 734 0.46 23 833 0.78
0 yes 22.6 6 82.7 0.27 11 747 1.55 7 843 0.79
0.05 yes 19.3 6 824 0.98 26 741 1.04 15 83.2 0.61
0.1  yes 12.5 10 825 0.62 24 744 1.85 34 83.5 0.69

both separately and when combined, as shown in Table 6. One can also observe that models trained
on the B set only score poorly on the validation data, reflecting their difference in entity distribution
with the train-A and validation sets.

Table 6: Data augmentation with task-data (train-B) and external data (vocgm). Finetuning scores
on the train-A, train-B, joint A and B sets, and vocgm-augmented sets.

micro F1 macro F1 weighted F1
training data epoch F1 std epoch F1 std epoch F1 std
A 15 81.8 0.3 29 70.7 1.0 12 825 0.44
B 36 66.2 0.84 37 532 225 36 67.6 0.75
A+B 28 832 0.62 14 716 0.75 20 83.5 1.04
A+vocgm 6 827 0.27 11 747 1.55 7 843 0.79

A+B+vocgm 35 843 046 13 76.1 1.23 39 84.8 0.36

In contrast, test results, reported in Table 7, show that models co-trained on the train-B set
perform relatively better on the test data, reflecting the somewhat closer distributions within the
train-B/test set of annotations. Class-agnostic co-training with the vocgm data however still
provides gains for micro and macro F1 test seqeval scores.

Table 7: Data augmentation: validation (token and seqeval) and test seqeval scores for best micro-
F1 checkpoint (single seed). All checkpoints use the same initial seed, and are selected by (token)
micro F1 scores.

validation token F1 validation seqeval F1 test seqeval F1
training data ~ ep. mic. mac. weigh. mic. mac. weigh. mic. mac. weigh.
A 15 81.7 70.0 822 822 783 821 66.6 60.8 64.2
B 40 66.2 546 679 659 583 644 649 579 63.9
A+B 8 83.0 69.5 832 82.6 78.0 825 69.0 63.6 67.2
A-+vocgm 15 828 75,5 84.1 853 816 85.3 679 634 633

A+4+B+4vocgm 40 83.1 75.0 834 85.8 824 85.8 69.7 64.7 664
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A comparison of precision and recall, shown in Table 8, shows that vocgm augmented models
have higher overall precision but lower recall on the test data. The higher precision of vocgm-

Table 8: Data augmentation with task-data (train-B) and external data (vocgm): seqeval precision
and recall. Best test scores for augmented data models are boldfaced.

validation test
training micro macro weight. micro macro weight.
data P R P R P R P R P R P R
A 80.8 835 799 786 812 835 722 619 652 609 748 619
B 653 66.5 61.1 58.8 654 665 637 663 570 605 634 66.3
A+B 83.1 848 809 814 836 848 745 653 69.2 659 748 65.3

A+vocgm 85.6 850 83.6 808 860 850 77.6 604 744 60.2 805 604
ABvocgm 85.1 86.6 83.7 824 854 86.6 77.7 63.1 716 628 793 63.1

augmented models can be attributed to the larger training data: as models are exposed to more data
during training, even 0 instances contribute to penalizing false positives.

Table 9: Type level seqgeval scores for the in-task (A+B) and external (A+B+vocgm) augmented
training data. We separate types by their presence in the vocgm training data. Best F1 scores per
type are boldfaced; underlined values highlight types for which the A+B+vocgm trained model
has higher precision on unknown types and types for which the non-vocgm-augmented model has
higher precision or recall on augmented types.

train A+B train A+B+vocgm test

support prec. recall F1 support prec. recall F1 supp.

CMTY_NAME 857 875 77.8 824 857 972 778 86.4 45
CMTY_QUAL 136 0.0 0.0 0.0 136 0.0 0.0 0.0 4
CMTY_QUANT 526 80.0 57.1 66.7 526 63.6 50.0 56.0 14
DATE 370 725 80.6 76.3 370 619 722 66.7 37
DOC 201 679 514 585 201 738 443 554 71
PER_ATTR 417 79.3 34.0 47.6 417 855 232 364 203
PRF 866 70.7 80.0 75.1 866 70.6 81.1 755 175
SHIP_TYPE 364 833 952 88.9 364 864 90.5 884 21
STATUS 156 64.5 741 69.0 156 69.0 741 714 27
ETH_REL 57 333 0.1 14.3 262 750 27.3 40.0 11
LOC_ADJ 260 46.2 66.7 545 3105 583 77.8 66.7 18
LOC_NAME 636 88.6 84.8 86.7 9173 914 924 919 92
ORG 162 702 727 714 1760 85.7 76.4  80.8 110
PER_NAME 678 68.8 71.7 70.2 4700 714 76.1  73.7 46
SHIP 247 100.0 85.7 923 1730 84.6 78.6 81.5 14

In some cases, namely CMTY_NAME, DOC, PER_ATTR, SHIP_TYPE, and STATUS, this leads to a
higher precision of the A+B+vocgm model on vocgm-unknown types, as shown in Table 9. The
lower test recall with the A+B+vocgm model results mostly from the combination of poor recall
for the PER_ATTR class and the weight of that class in the text data, which also explains the lower
overall weighted F1 score in Table 7. The low recall for this class is the combined result of under-
representation in the training data and over-representation in the test data (see Figure 1). Whereas
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performance for this class should improve from retraining a NER model on all the data, this result
shows how sensitive the less represented types are to differences between training and unseen data.

The type-level scores in Table 9 also show that the decrease in recall with the external vocgm
data is mostly related to vocgm-unknown classes, reflecting the fact that these classes become less
well represented in the augmented training data.

In contrast, the A+B+vocgm model exhibits higher F1 scores for shared classes, with the no-
table exception of the SHIP class. Although the results for this class are subject to variance given
its poor representation in the test data, we note that there is no direct overlap of the test instances
with the rest of the data. As about 75% of the vocgm SHIP instances come from editorial notes
rather than historical text [2], we suspect that the lower score for this class may come from textual
differences between the OBP and the editorial notes of the voc-gm-ner corpus, which may be fur-
ther aggravated by tokenization, as gloBERTise is trained on the OBP and not on the vocgm data.
It would be interesting to retrain a model using only the historical part of the voc-gm-ner corpus in
this respect.

6 Conclusion

We have presented a fine-grained NER dataset for VOC-related Dutch historical texts, covering
8000 mentions of 15 entity types for the VOC domain. NER modelling experiments on this dataset
show the benefit of adapting the language model to the task’s data, leading to a lightweight, per-
forming model. We propose a simple technique, class-agnostic co-training, to leverage datasets
from similar sources but with more restricted tagsets for data augmentation. We have shown that
this method increases overall performance for the NER tags that are shared with the in-task data,
while generally increasing precision for unknown tags. We hope that this method will encourage
the reuse of existing datasets in specialised domains.

Acknowledgements

This work was undertaken as part of the GLOBALISE project’. The overarching goal of GLOB-
ALISE is to enrich VOC materials with structured, semantic annotations that aid users in reading,
interpreting, and contextualizing the historical records in the vast corpus of texts created by the
Company as kept in the National Archive of the Netherlands. By layering this information on top
of the original texts and making it (re)searchable, the project aims to present the archival material
in a digital infrastructure that bridges the temporal, linguistic, and cultural distance between then
and now.

We thank SURF (www.surf.nl) for the support in using the Dutch National Supercomputer
Snellius, and the anonymous reviewers for their constructive comments.

References

[1] Arnoult, Sophie. “VOC GM NER corpus”. en. Datapackage. Publisher: Vrije Universiteit
Amsterdam. Dec. 2022. DOI: 10.48338/VU01-HI67KL. URL: https://publication.
yoda.vu.nl/full/VUO1/HI67KL.html.

7 Funded by the Dutch Research Council, https://globalise.huygens.knaw.nl/

929


https://doi.org/10.48338/VU01-HI67KL
https://publication.yoda.vu.nl/full/VU01/HI67KL.html
https://publication.yoda.vu.nl/full/VU01/HI67KL.html
https://globalise.huygens.knaw.nl/

(2]

(3]

(4]

[5]

(6]

(7]

(8]

[9]

[10]

Arnoult, Sophie I., Petram, Lodewijk, and Vossen, Piek. “Batavia asked for advice. Pre-
trained language models for Named Entity Recognition in historical texts.” In: Proceedings
of the 5th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, So-
cial Sciences, Humanities and Literature, ed. by Stefania Degaetano-Ortlieb, Anna Kazant-
seva, Nils Reiter, and Stan Szpakowicz. Punta Cana, Dominican Republic (online): Asso-
ciation for Computational Linguistics, Nov. 2021, pp. 21-30. DOI: 10.18653/v1/2021.
latechclfl-1.3. URL: https://aclanthology.org/2021.latechclfl-1.3/.

Conneau, Alexis, Khandelwal, Kartikay, Goyal, Naman, Chaudhary, Vishrav, Wenzek,
Guillaume, Guzman, Francisco, Grave, Edouard, Ott, Myle, Zettlemoyer, Luke, and
Stoyanov, Veselin. “Unsupervised Cross-lingual Representation Learning at Scale”. In:
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
ed. by Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault. Online: Association
for Computational Linguistics, July 2020, pp. 8440-8451. DOI: 10.18653/v1/2020.acl-
main.747. URL: https://aclanthology.org/2020.acl-main.747/.

Devlin, Jacob, Chang, Ming-Wei, Lee, Kenton, and Toutanova, Kristina. “BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding”. arXiv:1810.04805
[cs]. May 2019. DOI: 10.48550/arXiv.1810.04805. URL: http://arxiv.org/abs/
1810.04805.

Ghosh, Sreyan, Tyagi, Utkarsh, Suri, Manan, Kumar, Sonal, S, Ramaneswaran, and
Manocha, Dinesh. “ACLM: A Selective-Denoising based Generative Data Augmentation
Approach for Low-Resource Complex NER”. en. In: Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers). Toronto,
Canada: Association for Computational Linguistics, 2023. DOI: 10 . 18653/ v1/2023.
acl-long.8. URL: https://aclanthology.org/2023.acl-long.8.

GLOBALISE Project. “VOC transcriptions v2 - GLOBALISE”. 2024. URL: https://
hdl.handle.net/10622/LVXSBW.

Gu, Yu, Tinn, Robert, Cheng, Hao, Lucas, Michael, Usuyama, Naoto, Liu, Xiaodong, Nau-
mann, Tristan, Gao, Jianfeng, and Poon, Hoifung. “Domain-Specific Language Model Pre-
training for Biomedical Natural Language Processing”. In: ACM Transactions on Comput-
ing for Healthcare 3, no. 1 (Oct. 2020), pp. 1-23. ISSN: 2637-8051. DOI: 10 . 1145/
3458754, URL: http://dx.doi.org/10.1145/3458754.

Gururangan, Suchin, Marasovi¢, Ana, Swayamdipta, Swabha, Lo, Kyle, Beltagy, Iz,
Downey, Doug, and Smith, Noah A. “Don’t Stop Pretraining: Adapt Language Models to
Domains and Tasks”. In: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, ed. by Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel
Tetreault. Online: Association for Computational Linguistics, July 2020, pp. 8342—-8360.
DOI: 10.18653/v1/2020.acl-main.740. URL: https://aclanthology.org/2020.
acl-main.740/.

Honnibal, Matthew, Montani, Ines, Van Landeghem, Sofie, and Boyd, Adriane. “spaCy:
Industrial-strength Natural Language Processing in Python”. In: (2020). DOI: 10.5281/
zenodo.1212303.

Hu, Xuming, Jiang, Yong, Liu, Aiwei, Huang, Zhonggiang, Xie, Pengjun, Huang, Fei, Wen,
Lijie, and Yu, Philip S. “Entity-to-Text based Data Augmentation for various Named Entity
Recognition Tasks”. In: Findings of the Association for Computational Linguistics: ACL
2023, ed. by Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki. Toronto, Canada:
Association for Computational Linguistics, July 2023, pp. 9072-9087. DOI: 10 . 18653/

930


https://doi.org/10.18653/v1/2021.latechclfl-1.3
https://doi.org/10.18653/v1/2021.latechclfl-1.3
https://aclanthology.org/2021.latechclfl-1.3/
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://aclanthology.org/2020.acl-main.747/
https://doi.org/10.48550/arXiv.1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/2023.acl-long.8
https://doi.org/10.18653/v1/2023.acl-long.8
https://aclanthology.org/2023.acl-long.8
https://hdl.handle.net/10622/LVXSBW
https://hdl.handle.net/10622/LVXSBW
https://doi.org/10.1145/3458754
https://doi.org/10.1145/3458754
http://dx.doi.org/10.1145/3458754
https://doi.org/10.18653/v1/2020.acl-main.740
https://aclanthology.org/2020.acl-main.740/
https://aclanthology.org/2020.acl-main.740/
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.18653/v1/2023.findings-acl.578
https://doi.org/10.18653/v1/2023.findings-acl.578

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

v1/2023.findings-acl.578. URL: https://aclanthology.org/2023.findings-
acl.578/.

Kingma, Diederik P. and Ba, Jimmy. “Adam: A Method for Stochastic Optimization”. 2014.
arXiv: 1412.6980 [cs.LG]. URL: https://arxiv.org/abs/1412.6980.

Klie, Jan-Christoph, Bugert, Michael, Boullosa, Beto, Eckart de Castilho, Richard, and
Gurevych, Iryna. “The INCEpTION Platform: Machine-Assisted and Knowledge-Oriented
Interactive Annotation”. In: Proceedings of the 27th International Conference on Compu-
tational Linguistics: System Demonstrations, ed. by Dongyan Zhao. Santa Fe, New Mex-
ico: Association for Computational Linguistics, Aug. 2018, pp. 5-9. URL: https : / /
aclanthology.org/C18-2002/ (visited on 07/19/2025).

Koert, Rutger van, Klut, Stefan, Koornstra, Tim, Maas, Martijn, and Peters, Luke. “Loghi:
An End-to-End Framework for Making Historical Documents Machine-Readable”. en. In:
Document Analysis and Recognition — ICDAR 2024 Workshops, ed. by Harold Mouchére
and Anna Zhu. Cham: Springer Nature Switzerland, 2024, pp. 73-88. ISBN: 978-3-031-
70645-5. DOI: 10.1007/978-3-031-70645-5_6.

Koolen, Marijn, Renkema, Esger, Groskamp, Nienke, Smit, Frank, Reinders, Jirsi, Sluijter,
R.G.H., Hoekstra, Rik, and Oddens, Joris. “Accessing the Republic: Digital Humanities in
the Benelux 2024 Conference”. In: 2024. DOI: 10.5281/zenodo.11485227.

Liu, Yinhan, Ott, Myle, Goyal, Naman, Du, Jingfei, Joshi, Mandar, Chen, Dangi, Levy,
Omer, Lewis, Mike, Zettlemoyer, Luke, and Stoyanov, Veselin. “RoBERTa: A Robustly Op-
timized BERT Pretraining Approach”. arXiv:1907.11692 [cs]. July 2019. DOI: 10.48550/
arXiv.1907.11692. URL: http://arxiv.org/abs/1907.11692.

Luthra, Mrinalini, Todorov, Konstantin, Jeurgens, Charles, and Colavizza, Giovanni. “Un-
silencing colonial archives via automated entity recognition”. In: Journal of Documentation
(2023). ISSN: 0022-0418. DOI: 10.1108/JD-02-2022-0038. URL: https://doi.org/
10.1108/JD-02-2022-0038 (visited on 07/13/2023).

Manjavacas, Enrique and Fonteyn, Lauren. “Adapting vs. Pre-training Language Models for
Historical Languages”. English. In: Journal of Data Mining & Digital Humanities NLP4DH,
3 (June 2022): Digital humanities in languages. ISSN: 2416-5999. DOI: 10.46298/ jdmdh.
9152. URL: https://jdmdh.episciences.org/9152.

Manjavacas Arevalo, Enrique and Fonteyn, Lauren. “Non-Parametric Word Sense Disam-
biguation for Historical Languages”. In: Proceedings of the 2nd International Workshop
on Natural Language Processing for Digital Humanities, ed. by Mika Hamaéldinen, Khalid
Alnajjar, Niko Partanen, and Jack Rueter. Taipei, Taiwan: Association for Computational
Linguistics, Nov. 2022, pp. 123-134. DOI: 10. 18653 /v1/2022.nlp4dh-1. 16. URL:
https://aclanthology.org/2022.nlp4dh-1.16/.

Nakayama, Hiroki. “seqgeval: A Python framework for sequence labeling evaluation”.
Software available from https://github.com/chakki-works/seqeval. 2018. URL: https :
//github.com/chakki-works/seqeval.

Provatorova, Vera, Erp, Marieke van, and Kanoulas, Evangelos. “Too Young to NER: Im-
proving Entity Recognition on Dutch Historical Documents”. In: Proceedings of the Third
Workshop on Language Technologies for Historical and Ancient Languages (LT4HALA) @
LREC-COLING-2024, ed. by Rachele Sprugnoli and Marco Passarotti. Torino, Italia: ELRA
and ICCL, May 2024, pp. 30-35. URL: https://aclanthology.org/2024.1t4hala-
1.4/.

931


https://doi.org/10.18653/v1/2023.findings-acl.578
https://aclanthology.org/2023.findings-acl.578/
https://aclanthology.org/2023.findings-acl.578/
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://aclanthology.org/C18-2002/
https://aclanthology.org/C18-2002/
https://doi.org/10.1007/978-3-031-70645-5_6
https://doi.org/10.5281/zenodo.11485227
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.48550/arXiv.1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.1108/JD-02-2022-0038
https://doi.org/10.1108/JD-02-2022-0038
https://doi.org/10.1108/JD-02-2022-0038
https://doi.org/10.46298/jdmdh.9152
https://doi.org/10.46298/jdmdh.9152
https://jdmdh.episciences.org/9152
https://doi.org/10.18653/v1/2022.nlp4dh-1.16
https://aclanthology.org/2022.nlp4dh-1.16/
https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
https://aclanthology.org/2024.lt4hala-1.4/
https://aclanthology.org/2024.lt4hala-1.4/

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Radford, Alec, Wu, Jeffrey, Child, Rewon, Luan, David, Amodei, Dario, and Sutskever,
Ilya. “Language Models are Unsupervised Multitask Learners”. en. Tech. rep. OpenAl,
2019. URL: https://d4mucfpksywv.cloudfront .net/better-language-models/
language—-models.pdf.

Sanh, Victor, Debut, Lysandre, Chaumond, Julien, and Wolf, Thomas. “DistilBERT, a dis-
tilled version of BERT: smaller, faster, cheaper and lighter”. arXiv:1910.01108 [cs]. Mar.
2020. DOI: 10.48550/arXiv.1910.01108. URL: http: //arxiv. org/abs/ 1910.
01108.

“Text Chunking Using Transformation-Based Learning”. en. In: Text, Speech and Language
Technology. ISSN: 1386-291X. Dordrecht: Springer Netherlands, 1999, pp. 157-176. ISBN:
978-90-481-5349-7 978-94-017-2390-9. DOI: 10.1007/978-94-017-2390-9_10. URL:
http://link.springer.com/10.1007/978-94-017-2390-9_10.

Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones, Llion, Gomez,
Aidan N., Kaiser, Lukasz, and Polosukhin, Illia. “Attention Is All You Need”. 2017. arXiv:
1706.03762 [cs.CL]. URL: https://arxiv.org/abs/1706.03762.

Verkijk, Stella. “gloBERTise”. 2025. URL: https : //huggingface . co/globalise/
GloBERTise.

Verkijk, Stella, Vossen, Piek, and Sommerauer, Pia. “Language Models Lack Temporal Gen-
eralization and Bigger is Not Better”. In: Findings of the Association for Computational Lin-
guistics: ACL 2025, ed. by Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Moham-
mad Taher Pilehvar. Vienna, Austria: Association for Computational Linguistics, July 2025,
pp. 20629-20637. ISBN: 979-8-89176-256-5. DOI: 10 . 18653 /v1 /2025 . findings -
acl.1060. URL: https://aclanthology.org/2025.findings-acl.1060/.

Wang, Huiming, Cheng, Liying, Zhang, Wenxuan, Soh, De Wen, and Bing, Lidong. “Order-
Agnostic Data Augmentation for Few-Shot Named Entity Recognition”. In: Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), ed. by Lun-Wei Ku, Andre Martins, and Vivek Srikumar. Bangkok, Thailand:
Association for Computational Linguistics, Aug. 2024, pp. 7792-7807. DOI: 10. 18653/
v1/2024.acl-long.421. URL: https://aclanthology.org/2024.acl-long.421/.

Wu, Shijie and Dredze, Mark. “Beto, Bentz, Becas: The Surprising Cross-Lingual Effective-
ness of BERT”. In: Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP). Hong Kong, China: Association for Computational Linguistics,
Now. 2019, pp. 833-844. DOI: 10.18653/v1/D19-1077. URL: https://www.aclweb.
org/anthology/D19-1077.

Zaratiana, Urchade, Tomeh, Nadi, Holat, Pierre, and Charnois, Thierry. “GLiNER:
Generalist Model for Named Entity Recognition using Bidirectional Transformer”.
arXiv:2311.08526 [cs]. Nov. 2023. DOI: 10 . 48550 / arXiv . 2311 . 08526. URL:
http://arxiv.org/abs/2311.08526.

Zhou, Ran, Li, Xin, He, Ruidan, Bing, Lidong, Cambria, Erik, Si, Luo, and Miao, Chunyan.
“MELM: Data Augmentation with Masked Entity Language Modeling for Low-Resource
NER”. en. In: Proceedings of the 60th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). Dublin, Ireland: Association for Computa-
tional Linguistics, 2022. DOI: 10 . 18653 /v1 /2022 . acl-1long . 160. URL: https:
//aclanthology.org/2022.acl-1long.160.

932


https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://doi.org/10.48550/arXiv.1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.1007/978-94-017-2390-9_10
http://link.springer.com/10.1007/978-94-017-2390-9_10
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://huggingface.co/globalise/GloBERTise
https://huggingface.co/globalise/GloBERTise
https://doi.org/10.18653/v1/2025.findings-acl.1060
https://doi.org/10.18653/v1/2025.findings-acl.1060
https://aclanthology.org/2025.findings-acl.1060/
https://doi.org/10.18653/v1/2024.acl-long.421
https://doi.org/10.18653/v1/2024.acl-long.421
https://aclanthology.org/2024.acl-long.421/
https://doi.org/10.18653/v1/D19-1077
https://www.aclweb.org/anthology/D19-1077
https://www.aclweb.org/anthology/D19-1077
https://doi.org/10.48550/arXiv.2311.08526
http://arxiv.org/abs/2311.08526
https://doi.org/10.18653/v1/2022.acl-long.160
https://aclanthology.org/2022.acl-long.160
https://aclanthology.org/2022.acl-long.160

	Introduction
	Annotations
	Data selection
	Annotation task
	Annotation process

	From annotations to training data
	Preprocessing
	Data splits
	Mapping entities to subtokens
	Metrics

	Finetuning pretrained language models for NER
	Pretrained models
	Experimental setup
	Model validation

	Data augmentation with unknown classes
	The voc-gm-ner corpus
	Selecting data by entity density
	Class-agnostic co-training
	Model validation
	Data augmentation with task data and external data

	Conclusion

