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Abstract

Heritage Weaver investigates the use of multimodal Al to link and explore museum data
across collections. Through a series of experiments, from zero-shot learning and information
retrieval to record linking, we demonstrate the value of fine-tuning multimodal models on
digital heritage. The paper elaborates on various evaluation strategies, leveraging existing
metadata or using expert annotations, to measure improvements in the model’s “understand-
ing” of often complex and messy historical materials.
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1 Introduction

Increasingly, museums and other GLAM institutions are digitising their holdings, producing dig-
ital metadata and images (or transcriptions) of their objects. These efforts enable novel ways of
exploring and searching GLAM collections. But while the amount of digital information has un-
doubtedly grown, the datafication of heritage has remained all too often locked within institutional
silos, creating a landscape that is patchy and disconnected. How can we break out of these si-
los, build meaningful bridges between data islands, and explore connections between collections?
These questions were central to the Towards a National Collection (TaNC) initiative, funded by
UK Research and Innovation’s Arts and Humanities Research Council, in which this research took
place as part of the Congruence Engine (CE) Project.! TaNC aimed to break “down the barri-
ers that exist between the UK’s outstanding cultural heritage”? with CE focusing specifically on
heritage related to the industrial past.

Previous attempts at linking museum data often framed the challenge as a linked-open-data
(LOD) problem, which required fitting (heterogeneous) data into preconceived ontologies and/or
vocabularies to encode relations between collection records [4].2> While LOD has its merits for
harmonising data, Heritage Weaver pursues a different strategy. We developed methods that har-
ness specialised multimodal Al to navigate and connect digital heritage. More specifically, this
paper presents experiments that evaluate the impact of model fine-tuning on zero-shot classifica-
tion, searching, and linking museum data across collections. These methods enable a flexible,
bottom-up approach to exploring connections across institutional silos, using both image and text
to forge links across otherwise isolated information containers.

Recently, multiple papers in computational humanities investigated the application of multi-
modality to heritage collections [1; 2; 14]. However, researchers often rely on “off-the-shelf”
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models without adapting them to the particularities of the historical data. This paper, however,
investigates what we can gain from adapting multimodal models to digital heritage, especially in
the context of exploring GLAM data across collections. In short, this paper probes the following
questions:

* Does model fine-tuning improve the classification, searching, and linking of museum data
taken from different institutions?

» How can we evaluate this?

While not pretending to provide definite answers, in this article we will share practical rec-
ommendations that help both scholars and GLAM professionals employ multimodal Al in their
research data or collections. In the following sections, we firstly explain the content of our data
and the models. Secondly, we outline the design of our experiments. Finally, we will discuss the
results from both a quantitative and qualitative perspective.*

2 Research Context

While originally focused on text, the digital and computational humanities have undergone sub-
sequent visual [16] and multimodal turns [15]. The recent arrival of CLIP [11] and other vision-
language models has led to an increased emphasis on multimodal (as opposed to monomodal)
approaches. In [15] Smits and Wevers, the authors demonstrate the value of zero-shot classifica-
tion in the context of heritage data. They demonstrate how CLIP provides a meaningful helping
hand when labeling data, which they apply to magic lanterns and children’s literature. Moreover,
they point to the (historical) biases present in these models, which arise from the composition of
the training data [3]. One problem with CLIP models, when used off-the-shelf, is that training data
may not be aligned with research materials and applications. We therefore explore how fine-tuning
multimodal models on museum collections might make them more reliable tools for exploring
and processing digital heritage. Instead of using off-the-shelf models or relying on very large but
closed models, we demonstrate that researchers and curators can gain a lot from adapting small
or mid-sized models to their collections. Our results reproduce (on a smaller scale, but applied to
digital heritage) the recent findings by [12]. They benchmark popular foundation models (includ-
ing gpt-4o, gemini 1.5, claude 3.5 sonnet, and more) on various tasks, demonstrating that these
large multimodal models are not competitive for specialised tasks, but perform respectably when
looking for a more generic solution. While large models are dominating Al research, their findings
suggest there is still value in fine-tuning smaller, open-source models, especially for tasks such as
image classification. Especially for computational humanities and GLAM, where researchers and
curators often rely on Al to analyse, navigate and explore specific (historical) datasets, we need
specialist instead of generalist models.

In the context of Computational Humanities Research, a few recent papers explored the po-
tential of multimodality cultural heritage. In [14], Smits and Kestemont demonstrate how CLIP
achieve respectable accuracy when applied to nineteenth-century magic lanterns in a zero-shot
setting. However, it was still outperformed by a vision model specifically fine-tuned for the task.
Another important source for multimodal analysis are historical maps, which combine visual and
textual features. [7] highlight the potential of multimodal search for historical maps, using text and
visual inputs (or both). They also introduce a dataset for fine-tuning multimodal models containing
more than 10,000 map-caption pairs. In “Reading maps at a distance”, [10] explores the combined
analysis of text labels and visual features on Ordnance Survey maps, to understand different types
of “railspace” in nineteenth-century Britain. Other types of cultural heritage collections have also

4 Forcodeandupdatessee:https://github. com/congruence-engine/heritage-weaver
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been analyzed from a multimodal perspective. For example, [8] investigated the viability of zero-
shot learning and search outside of the English language. They applied CLIP and SigLIP to a
collection of historical photos derived from Ajapaik, a crowd-sourced photo archive that com-
prises images related to Estonia or its neighboring countries. A paper by [13] looked closely at
opportunities of multimodality for book collections. They presented a proof-of-concept image-
search tool to explore the pre-1900 collections of the National Library of Norway. They found
that, for image retrieval and classification, SigLIP performed slightly better than CLIP or ViT.
Lastly, [2] proposed using advanced multimodal large language models (LL.Ms) to build an open-
ended, interpretable interface for exploring visual collections. Their approach demonstrated how
such models can power innovative clustering and recommendation mechanisms while overcoming
typical limitations associated with techniques that rely solely on visual embeddings.

This research also took inspiration from recent waves of “historical” language models (LM).
Using the collection of British Library books, [5] released a variety of historical BERT models fine-
tuned on specific temporal segments of the collection. MacBERTh can serve as another example,
introduced in [9] as an LM pre-trained on historical English (1450-1950). While researchers have
adapted and “historicised” LMs using transfer learning [6],” this paradigm seems less prevalent in
multimodal computational humanities. By demonstrating the benefits of historical adaptation of
multimodal Al, this research hopes to change this.

3 Data

In the Heritage Weaver project, we investigated two collections: the Science Museum Group
(SMG) and National Museums Scotland (NMS). Our data selection was guided by the Congru-
ence Engine’s emphasis on industrial heritage, and we focused on records related to three main
themes of the project: communications, energy, and textiles. We obtained all records related to
these themes, based on the existing taxonomy terms in the catalogues, selected by domain experts
in collaboration with the collection curators. In total, we collected 21,871 records: 20,889 from
SMG and 982 from NMS. Metadata and images were supplied by the relevant partner institutions.
After retrieval, we converted the data to a minimal, uniform format. We described each object with
the following metadata fields:

* record_id: the original object identifier taken from the museum catalogue

* name: the name mentioned in the catalogue ( “object_name” in the NMS metadata, and
value for the “name” key in SMG).

» img_url: alink to where the image is hosted online.

* description: a free-text description of the object. In the original metadata, this is the “de-
scription” column in NMS. For the SMG collection, we concatenated the values under the
“title” and “description” fields.

We stored this information in a vector database,® together with an embedding of text (name and
description) and the image. The database forms the infrastructural backbone for our experiments
below.

4 Models

Our collection contained images of historical and industrial artefacts, whose shape and function-
ality may be hard to decode for both the contemporary viewer and for current AI models. Models

5 or sometimes pre-training from scratch
® Using the chromadb API in Python: https://www.trychroma.com/
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such as CLIP often exhibit recency biases, failing to properly process or “understand” the content
of heritage materials [15]. Because of the specificity of our data, we set out to fine-tune open-
source multimodal models on these images and texts. Below, we assess if such adaptation might
be beneficial to museums, especially in facilitating the work of curators and researchers who wish
to classify, search and connect records across collections.

For all of our experiments, we used SigLIP (a variation on CLIP) as our base model [17].” CLIP
(Contrastive Language—Image Pretraining) [11] learns joint text-image embeddings using a con-
trastive loss between paired image and text data. Sigmoid Language—Image Pretraining (SigLIP)
replaces CLIP’s softmax-based contrastive loss with a sigmoid loss, improving performance by en-
abling better handling of large-scale unnormalised similarities and reducing the need for negative
samples.

Before training our models, we selected a random subset of the data for evaluation. Our training
set contained 19,545 records, and the testing set 2172 records.® Each item in the training set
consisted of an image and a text pair from the same record. The text was either the name or
the description of the image. If the description was longer than the 64 tokens allowed by the
SigLIP tokeniser, we split it into different segments of a maximum of 64 tokens. In this case, we
would associate the image with each segment, increasing the number of training examples. After
formatting the image-text pairs this way, our total data increased to 75,378 items, which we split
into a training and evaluation set.

While we refer to the process of adaptation as “fine-tuning,” the more accurate term is “con-
tinued pre-training,” since we are not changing the task, but rather adapting the base model to new
image-text data. We trained the model for five iterations using Binary Cross-Entropy with Sigmoid
activation as a loss function.? We left all other hyperparameters untouched for this round of exper-
iments, but we hope to investigate training options in more detail in later research. We saved two
checkpoints: ft-best, the checkpoint that obtained the lowest loss scores on the evaluation data, and
ft-last, the last, i.e. fifth checkpoint. The original SigL.IP model is referred to as base. Training
took around 3 hours on a single L4 GPU.

We included ft-last in our analysis to understand the risks (and impact) of overfitting. When we
want Al tools to act as “museum specialists”, does training longer harm or improve the performance
on downstream tasks?

To better contextualise the value of fine-tuning smaller models, we compared some results to
gpt-4o and gpt-4o-mini.'® When presenting this work on earlier occasions, we were often asked
why we focused on SigLLIP, and did not “simply” use ChatGPT (or similarly powerful closed models
with multimodal capabilities).

Firstly, our investigation aimed to give pragmatic guidance to museums (and other institutions)
on how Al can assist them with preserving and curating large heritage collections. This implies
that we needed to take into account the resources and skills available to these organisations, as
well as legal constraints. Given that museums are unlikely to possess large compute clusters or
budgets to integrate commercial LLMs, we investigated whether improving cheaper and smaller
models is a more fruitful avenue. These models can be fine-tuned and deployed with minimal cost
and empower institutions to retain control of their data and their tools.!* When relying on external

7 See: https://huggingface.co/google/siglip-base-patch16-224

8 Classification and retrieval scores reports below were based on records in the test set. Given that a record can contain
multiple images and text fragments, we split the data based on record identifiers to ensure none of the test examples
seeped into the training set.

® BCEWithLogitsLoss in  PyTorch: https://docs.pytorch.org/docs/stable/generated/torch.nn.
BCEWithLogitsLoss.html

10 See classification experiments

! Something which is not always guaranteed when partnering up with commercial companies relying on selling services
built on closed models.
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APIs, LLMs are convenient to implement and excellent for prototyping. However, when working
with large collections and building tools for production, they saddle users with high costs.'?> Sec-
ondly, Heritage Weaver aimed to create tools that work well for specific collections and historical
data. Do we need models that contain billions of parameters to improve the exploration of such
heritage collections? Thirdly, for reasons of privacy, legal and environmental concerns, handing
over collections to large corporations might carry significant risks that we were not willing to take.

5 Experiment Design
5.1 Background

This paper presents multiple experiments to evaluate the potential benefits of using fine-tuned mul-
timodal Al to explore museum data and digital heritage across collections. In Heritage Weaver, we
initially focused on the representations or embeddings produced by multimodal models, and es-
tablished to what extent these can serve as instruments for finding meaningful links (i.e. “weaving
connections”) within and across collections. Using representations extracted from SigL.IP, we can
compute similarity based on textual and visual data. But how and when do these similarities trans-
late to something meaningful? What models and modalities provide more reliable embeddings and
a better understanding of connections in our heritage materials?

Figure 1 visualises part of the problem. It compares all records in SMG (y-axis) to NMS
(x-axis) based on their embeddings. Each point contains a cosine similarity, and highly similar
record pairs are marked by black dots,'? the rest by white dots. We repeated this operation for
different modalities: text-to-text (left), image-to-image (centre) and image-to-text (right). What
becomes apparent is the divergence between these plots: which records are perceived as similar by
the model depends on the modality through which they are compared. Moreover, it also depends
on the model. Figure 1 highlights differences between ft_best and base for each modality. Black
dots indicate pairs on which the models disagree in their similarity assessment. We observe that
different regions light up; in this case, the models seem to disagree, especially in their cross-modal
comparison of records (image-to-text plot at the right).
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Figure 1: Visualising similar items across collections for different modalities (using ft_best model)
Black dots indicate highly similar records.

To establish when multimodal AT “makes sense” we designed a set of targeted experiments.
All experiments comprise a comparison between model outputs and a “ground truth” derived from
catalogue metadata or expert annotations. In this section we explain the design of our experiments

12 For more details, please consult a recent report written by Kaspar Beelen, published by Jisc, on “Small
Language Models for libraries and computational humanities.” https://repository.jisc.ac.uk/10293/1/
small-language-models-for-libraries-and-computational-humanities-18-sept-2025.pdf

13 These record pairs have a similarity scores that range in the 97.5th percentile.
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Figure 2: Visualising how models differ in their similarity assessment (ft_best vs. base). Black
dots indicate disagreement.

on classification, retrieval and linking. The evaluation of these experiments is described in the next
section.

5.2 Classification

We designed an automated experiment to evaluate the zero-shot classification abilities of the orig-
inal and fine-tuned models. The goal of this experiment was to understand how well different
models captured what the image represented by assigning meaningful labels. Zero-shot classifica-
tion provides an efficient method for exploring connections between collections based on flexible
label sets designed by the curator or the researcher. For it to work, however, the model needed to
successful recognise what is in a given image. We used the original name of an object record (or
the name’s root noun'?) as the ground truth and randomly add n other labels as candidates. We pre-
sented the model with a set of labels and asked it to guess the original name (i.e. the name derived
from the original record). In some cases, the automatically generated ground truth may be wrong
or uninformative. But as emphasised earlier, we are primarily interested in relative improvements
to the base model."®

This experiment simulates, to some extent, whether a model “understands” an image. By re-
peatedly asking it to select the correct label from a set of candidates, we can measure if fine-tuning
improves the overall alignment between visual and textual concepts. We should again emphasise
that images used for evaluation were not part of the training data. Table 2 shows a sample of the
data used for zero-shot classification using nouns as labels. It shows the original names and ex-
tracted root nouns. The candidate labels include the original noun and randomly selected nouns
from other records. The information in candidate_nouns is presented to the model for classifica-
tion. In the experiment report below, we apply zero-shot classification to names and nouns, and
increase the difficulty of the task by expanding the number of candidates from five to ten. We also
apply these tasks to subsets of the data, indicated by the data column.

5.3 Search

The second automated experiment simulated the influence of model fine-tuning on search and
information retrieval, testing performance within and across modalities. For each record r in the
evaluation data, we used the image 7,4 as a query, and retrieved n most similar entries in the vector

14 We use SpaCy to determine the root noun, selected the token with dependency tag “ROOT” and part-of-speech tag
“NOUN” or “PROPN”

15 Also, the likelihood that one of the randomly selected labels is actually a better candidate than the one distilled from
record metadata remains small.
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name noun candidate_nouns

razor blade sharpener sharpener [sharpener, block, switch, unit, button]
specimen specimen [specimen, uniselector, telephone, lamp, gener...
hand printing block (trademark) block [block, apparatus, machine, mat, bit]

Dynamo, Gramme dynamo [dynamo, specimen, cooker, lamp, pirns]

pay check check [check, horseshoe, cable, representation, cup]

Table 1: Example of data used for evaluating the zero-shot capabilities of original and fine-tuned
models. In this case, we test if the model can guess the root noun present in the record name.

database, based on either their image (image-to-image retrieval) or text (image-to-text retrieval)
embeddings.

To evaluate if the retrieved candidates were relevant to the query, we embed the name of the
query 7pqme (Which is not included in the search) and those of the retrieved records. We computed
the cosine similarity between 7,4me and e;, . for each retrieved item e;.'® Figure 3 shows an
example of this setup: the query is an image with the name “battery”. We searched the database
for similar images and computed the similarity between the vector representations of the names
(i.e. sim(“battery”, “accumulator”) and sim(“battery”, “lamp battery”)) to score the relevance of
the retrieved candidates. By comparing the names, we have some way of automatically assessing if
the retrieved images are relevant to the query. Because Heritage Weaver is specifically concerned
with building bridges across collections, we repeated this experiment, but this time we focused on
cross-collection search: i.e. if the image is produced by SMG, we assessed the extent to which
we could retrieve relevant records from NMS (and vice versa). The results for collection-agnostic
(top) and cross-collection (bottom) search are reported in Table 5.

QUERY RESULTS
Image-to-image
search Accumulator
QUERY o]

Lamp battery

Battery

Figure 3: Example of image-to-image search.

To gauge improvements in multimodal search, we experimented with text-to-image search,
in which object descriptions serve as queries for image retrieval. Put differently: Can we find
relevant images based solely on textual descriptions? Also, here, we used the names of the objects
to evaluate the quality of the found records. For cross-modal search, we also evaluate if the original
record associated with the description was retrieved.

5.4 Linking

The automated experiments elucidate how model fine-tuning contributes to downstream tasks such
as classification and information retrieval. To assess if GLAM professionals might benefit from tai-

16 For embedding names, we used the all-MiniLM-L6-v2 model with the Sentence Transformers library.
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lored multimodal models for bridging information silos, we set up an annotation experiment that
mimics linking and exploring heritage data across collections. We evaluated these experiments
both quantitatively and qualitatively. We recruited historians and curators to annotate, includ-
ing curators from National Museum Scotland, researchers from the Congruence Engine project, a
museum professional from the Discovery Museum in Newcastle, and a historian of Science and
Technology. The goal was to have a diverse group of researchers and museum professionals, with
different levels of expertise, familiarity with the collection, but united by a common understanding
of industrial heritage objects.

The annotation session took place online. We used a LabelStudio!” instance hosted on Hug-
gingFace Spaces'® as the annotation interface. We introduced the project, tasks and explained the
labels, to make sure everyone was equally informed. Each annotator was provided a different sub-
set for each task. Afterwards, the annotators were asked to share their thoughts and opinions. We
used these as a form of qualitative evaluation, but also let these observations inform decisions for
quantitative evaluation.

Early set of telephone apparatus. Early
set of telephone apparatus, constructed
by Messrs. Theiler and Sons (no receiver)

Crystal receiver, Bijou type C by British
Thomson-Houston, in a polished wooden

case

Figure 4: Example of link annotation.

To evaluate the impact of model fine-tuning, we followed a specific sampling strategy. We
sampled record pairs where each item is from a different collection (i.e. each pair links SMG to
NMS). Figure 4 shows an example of a record pair that annotators were asked to label. Because
of the wealth of possible combinations, randomly sampling record pairs would yield mostly un-
related items. Therefore, we focused on object pairs whose embeddings were highly similar.'
Then, we zoomed in on occurrences where models diverged in their assessments, e.g. record pairs
that a fine-tuned model recognises as similar while an off-the-shelf Sigl.LIP model did not (or vice
versa). Table 2 provides an overview of the procedure used for sampling record pairs. The first
row covers images where all models agreed on their image similarity (i.e. the similarity was above
a set threshold for all models). The texts might be similar, but this was not a criterion for selec-
tion (therefore marked by 0/1). The second row points to pairs of images which the base model
considers similar, but the fine-tuned model disagrees.

Annotators were tasked with labelling these sampled record pairs. We should stress that we did

Y https://labelstud.io/
8 https://huggingface.co/spaces
19 In the 99th percentile bracket
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image text base ft best ft_last

1 01 1 1 1
1 01 1 0 0
1 01 0 1 1
1 01 0 1 0
0/1 1 1 1 1
0/1 1 1 0 0
0/1 1 0 1 1
0/1 1 0 1 0

Table 2: Overview of sampling strategies for record pairs.

not disclose to the annotators the sampling method, meaning that they didn’t know which model
or modality produced the examples they were labelling. They, therefore, couldn’t be biased by our
research question. Each annotator was presented with 100 pairs to annotate, choosing to assign

P N1 &«

each pair as either “same object”, “similar object”, “same category”, and “unrelated”.

» Same object: A rare annotation used for when the object is identical. For example, two 700
series telephones, two gas lamps, or two Jacquard looms.

+ Similar object: Objects which are highly similar but not the same, for example, two tele-
phones, two light bulbs, two looms.

» Same category: Denotes when two objects have similar uses, perhaps they would be as-
signed to the same category within a CMS, but they are different ‘things’. This is probably
the loosest and most subjective form of linkage.

» Unrelated: These objects are not the same, similar, or used for similar purposes. They have
no meaningful connection.

We did not compute inter-annotator agreement, as our main goal was not to create a gold
standard, but to establish which aspects (i.e. modalities and models) yielded results useful to these
particular experts.?°

6 Results
6.1 Classification

To evaluate the zero-shot classification capabilities, we measured if the Sigl.IP models can accu-
rately guess the correct label for an image from a set of candidates. The target or correct label
is the name associated with the image in the metadata, to which we randomly added other names
from the catalogue. We varied the experiments slightly to better understand the robustness of our
findings:

» we changed the number of candidates

» we used the original name of the object or the root noun (both as target label and other
candidates)

2 Also, we gave annotators different pairs to label, maximizing the number of different observation, but making com-
puting agreement impossible.
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data model target n_cand accuracy precision f1

all base noun 5 0.721 0.829 0.751
all ft-last noun 5 0.876 0.910 0.884
all ft-best noun 5 0.892 0.920 0.898
all base noun 10 0.625 0.764 0.658
all ft-last noun 10 0.805 0.849 0.816
all ft-best noun 10 0.814 0.848 0.821
all base name 5 0.793 0.854 0.809
all ft-last name 5 0.935 0.955 0.941
all ft-best name 5 0.939 0.953 0.941
all base name 10 0.716 0.794 0.735
all ft-last name 10 0.902 0.934 00911
all ft-best name 10 0.907 0.927 0.912
filter base noun 5 0.683 0.721 0.679
filter ft-last noun 5 0.849 0.871 0.852
filter ft-best noun 5 0.850 0.872 0.853
filter base name 5 0.779 0.781 0.769
filter ft-last name 5 0.927 0.938 0.928
filter ft-best name 5 0.932 0.943 0.934
sample base noun 10 0.635 0.707  0.656
sample ft-last noun 10 0.805 0.844 0.811
sample ft-best noun 10 0.825 0.836 0.825
sample chatgpt-4o-mini noun 10 0.660 0.729 0.672
sample chatgpt-4o noun 10 0.770 0.801 0.771

Table 3: Zero-shot classification results.

In Table 5.4 the target column indicates whether we classified names or nouns; n_candidates
points to the number of candidates (either 5 or 10). Other columns show the overall accuracy and
the weighted precision and f1 scores for each experiment. We first applied zero-shot classification
to the complete test set, which is indicated by the all value in the data column.

Across all experiments, the fine-tuned models substantially improved upon the off-the-shelf
base model. Overall, we observed an increase in accuracy scores between 15% to 20%. When
expanding the candidates, these numbers slightly drop, as the task gets more difficult, but the gap
between the original and fine-tuned models persists. For example, SigL.IP base obtains an accuracy
of 0.721 for zero-shot classification with five candidates. When asked to pick the right label from
a set of ten, the accuracy declines to 0.625. The best fine-tuned models achieve a score of 0.892,
respectively 0.814. Names seem somewhat easier to classify compared to the more abstract and
generic nouns: the scores climb and the fine-tuned models outperform SigL.IP base by a margin of
more than 10%.

To understand divergence between original and fine-tuned models, we calculated the difference
in accuracy for each object type (in this case, the head noun in the object name).?! We compared
the fine-tuned models to SigL.IP base disaggregating the scores by noun; scores above zero indi-

2! These numbers are based on the first experiment, zero-shot classification for all the data with five different labels
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Figure 5: Difference in accuracy compared to base SigL.IP model.

cate better performance of ft-last or ft-best for this noun, negative numbers point to objects where
the fine-tuning might harm performance. The results for the most common objects are reported in
3. Inspecting these results more closely shows that part of the performance difference stems from
the naming conventions in museum catalogues. For example, fine-tuned models excel for the cate-
gories “specimen”, “model”, or “sample”. In this sense, one could argue that adapting models does
not necessarily improve their ability to understand what is represented in these (historical) images,
but tailors them to curatorial practices and conventions. However, we reran these experiments,
leaving out the records where the name does not describe the object but characterises the type of
representation (“model”, “specimen”, “sample”, etc.). These experiments are marked by filter in
the data column. While zooming in on the “objective” names changes the accuracy somewhat,
it does not alter the core of our findings: the gaps in performance persist and the adapted models
score better than the base models, with margins of around 15% or more. Also in this scenario,
ft-best leaves all others behind.

Lastly, we compared the performance of our historical, adapted models to the popular and
powerful ChatGPT. To keep the costs down, we restricted this experiment to a subsample of 200
records. We instructed ChatGPT as follows:

+ System Prompt: You are a helpful assistant that classifies images into specific categories.

 User Prompt: Classify this image into one of these labels: {{labels}} Respond only with the
label.

Lastly, we ensured that all responses could be mapped to at least one of the classes, with the
only exception when ChatGPT replied that “none of the labels applied”. This was considered to
be an incorrect answer, or failure. Interestingly, even an immensely large model as gpt-4o—which
admittedly hasn’t been trained on our museum data, at least as far as we know——performs consid-
erably worse than our small (but fine-tuned) models. While gpt-4o does better than SigL.IP base,
its accuracy is still 5% below ft-best. Moreover, ChatGPT took around 5 minutes to process 200
records, while SigL.IP completed the task in about 1 minute on a MacBook Pro without GPU ac-
celeration. It suffices to say that, based on these findings, museums and other heritage institutions,
better prioritise small and customizable Al instead of relying on expensive, commercial LLMs.

6.2 Search

The search experiments simulate various content retrieval scenarios: how does fine-tuning change
the ranking of records based on their intra-modal (i.e. image-to-image) or cross-model (text-to-
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model | n relevance sd. n relevance sd. n relevance sd.

base 3 1.959 0.928 | 10 4.678 3.621 | 20 8.019 7.379
ft-last | 3 1.998 0.932 | 10 4.868 3.723 | 20 8.510 7.694
ft-best | 3 2.005 0.925 | 10 4.882 3.729 | 20 8.510 7.682
base 3 0.024 0.191 | 10 0.084 0.581 | 20 0.138 0.921
ft-last | 3 0.033 0.225 | 10 0.109 0.696 | 20 0.180 1.116
ft-best | 3 0.035 0.220 | 10 0.111 0.659 | 20 0.189 1.116

Table 4: Average similarity (for image-to-image search) between names of the query record and
retrieved records. The first set of results is collection agnostic; the second set shows results for
cross-collection search.

model n | experiment relevance found | experiment relevance found

base 10 | text-image 2.631 0.179 | image-text 2.234  0.122
ft-last 10 | text-image 4.639 0.307 | image-text 3.876 0.109
ft-best 10 | text-image 4.225 0.288 | image-text 3.327 0.054

Table 5: Average similarity between the name of the query record and retrieved records for image-
to-text and text-to-image search.

image) similarity? Table 5 reports scores for image-to-image search. The first set of results is based
on collection agnostic search (we search the whole database), the second set shows performance
for cross-collection document retrieval (i.e. we use records from SMG to find information in NMS
and vice versa). Query records were not part of the training data. Therefore, for each image in the
test set, we evaluated the relevance of the retrieved records by comparing the average similarity
between the name of the query image and the names of the retrieved images. If the similarity
between the names was above 0.95 we coded this pair as one?2, otherwise as zero. The scores in
Table 5 should be read as follows: a relevance score of 2.005 for n=3, indicates that, on average,
two out of three retrieved images have record names whose cosine similarity is above 0.95 (to the
query image name). the sd. column shows the standard deviation of these relevance scores across
all searches.

The findings in Table 5 align with those of zero-shot classification. Regardless of the number
of retrieved records, the fine-tuned models return more relevant images. However, we should note
that the difference can remain small, i.e. looking only at the top three, the gap between base and
ft-best is only 0.046. This difference widens to almost 0.5 records when we increase n to twenty.
When searching across collections, the numbers drop, but this was to be expected: there simply
might not be enough relevant entries in the other collection. However, in all cases, we observe a
slight improvement attributable to fine-tuning.

Table 4 tests the cross-modal search capabilities: we use a description to search for images (or
vice versa, use images to search descriptions). Similar to 5, the relevance column compares the
name of the query record to the retrieved items. The found columns indicate to what extent we
could find the original record across all searches, e.g. whether we could fetch the correct image
based on its descriptions. The values in this column range between zero (never) and one (always).

22 This value is somewhat arbitrary, from the previous experiments with sentence embeddings we found that scores
around or above 0.95 likely indicate similarity in meaning.
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The former indicates that we could not retrieve the original records in any of the searches; the
latter that all cross-modal queries managed to return the original record (i.e. the original record
was found among the top n retrieved items).

The scores for text-to-image search are generally higher than image-to-text search. Interest-
ingly, the performance gap between base and fine-tuned models tends to widen when looking at
the relevance scores. In these cases, the model trained for more epochs achieved better results.
However, the numbers reported in the found column deviate somewhat from the patterns observed
in previous experiments. ft-last managed to retrieve the original image based on the description in
around 30% of the searches (meaning that the original record appeared in the top ten results). This
drops to around 11% when searching the other way. In this case, we have evidence that fine-tuning
might hurt performance, as both ft-last and ft-best fare worse than base. At the moment, we can
only speculate about reasons, but this will be part of future research.

6.3 Linking

So far, we have relied on metadata as proxies of ground truth. However, to establish how ex-
perts read and interpret the results returned by our models, we designed an annotation experiment.
The following experiment established where experts might actually experience benefits from using
fine-tuned multimodal AT for connecting records across museum collections. With this linking ex-
periment, we gauged how similarity, measured in terms of model representations (or embeddings),
translates to meaningful connections between historical objects (as perceived by experts). As dis-
cussed above, each of the sampled pairs connected objects between SMG and NMS, and scored
high with respect to their cosine similarity.

6.3.1 Quantitative Evaluation

Overall, we collected around 551 annotations, for which Figure 5 shows the distribution. The
majority category (46%) is “unrelated”, which points to the fact that even high vector similarity
does not equate to a meaningful connection. However, in most cases (54%), these pairs do exhibit
a valuable relationship between objects, though the strength of this relationship varies, from “same
object” (1%) over “similar object” (30%), to “same category” (23%).

250

150

100

=

Unrelated
Similar object
Same category
Same object

Figure 6: Label distribution of link annotations
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coef std err z P>z| [0.025 0.975]

base -0.1960 0.148 -1.329 0.184 -0.485 0.093
ft-last  0.3692 0.122 3.024 0.002 0.130 0.608

base -0.2392 0.148 -1.613 0.107 -0.530 0.051
ft-best 0.4543 0.124 3.654 0.000 0.211 0.698

Table 6: Logistic regression that predict the effect of the model selection on link annotation.

coef std err z P>z| [0.025 0.975]

img_base -0.1189  0.207 -0.576 0.565 -0.524  0.286
img_ft-best 0.3919 0.204 1.917 0.055 -0.009 0.792
txt_base -0.1473 0.209 -0.706 0.480 -0.556 0.262
txt_ft-best 0.1870 0.223 0.837 0.403 -0.251 0.625

img_base 0.0006  0.197 0.003 0.998 -0.386 0.388
img_ft-last  0.3630 0.184 1.974 0.048 0.003 0.723
txt_base -0.1583 0.212 -0.745 0.456 -0.575 0.258
txt_ft-last 0.0606 0.202 0.301 0.764 -0.334 0.456

Table 7: Logistic Regression that estimates the effect of modality and model on link annotation.

The principal question, however, was to establish if fine-tuning models provided better candi-
dates for record linking across collections. We analysed the annotations as a function of the models
and modalities (i.e. as a function of the sampling strategy). We binarised the dependent variable as
0 (“unrelated”) or 1 (for the other categories). Our independent variables are the models, base, ft-
last and ft-best. Each observation was then dummy-coded: e.g. [1,0] would indicate that a record
pair was similar for base but not the ft-last. We then performed a logistic regression and reported
the coefficients with their standard errors. We tested the performance of each of the fine-tuned
models against the base model in separate regressions (base vs ft-last and base vs ft-best). In both
regressions (see Table 6), the fine-tuned models appear to contribute to the likelihood of a positive
link. We observe the largest and most significant effect for ft-best with a z-score of 3.654 and a
p-value smaller than 0.001.

To get a more precise estimate of how different modalities contribute to linking, we broke down
the predictors to modality_model variables, e.g. image_base indicates that image embeddings for
the base SigL.IP model obtained a high cosine similarity; text_ft-best in turn means that the text
embeddings for the ft-best model were very similar, etc. We then reran the regression using the
expanded set of independent variables. While the effects remained weak and only marginally
significant, we observed that improvements in linking came primarily through visual modality.
Again, this finding is consistent across fine-tuned models, with the largest effect of 0.3919 observed
for ft-best (p-value > 0.1), followed by img_ft-last (with a coefficient of 0.3630 and p-value >
0.05). These results not only underline the value of fine-tuning models on heritage data, but they
also point towards the importance of multimodality for exploring and linking museum collections.
The improvements of fine-tuning seem to be located at the visual level, rather than the textual.
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6.3.2 Qualitative Evaluation: Experts’ Reflections on Linking

The preceding evaluation scrutinised the annotations from a statistical angle. However, we were
also interested in how the experts experienced the annotation session; how they approached the
tasks and what made it meaningful for them. After the session, the participants were invited to note
down their reflections, which we collected and analysed to inform both the quantitative evaluation
and the future development of multimodal tools linking records across collections.

Curators who knew their objects were keen to have more specific ways to link objects, i.e.
more refined categories. Curators less familiar with the data reflected that this level of specificity
would be overwhelming to those who lacked relevant specialist knowledge. This curator, alongside
the other participants who were all researchers and academics, felt that more categories would
be confusing as they lacked the necessary domain expertise. They felt they were able to infer
with reasonable confidence what linked and did not link, but could not go into more detail. This
informed our decision to binarise the labels for evaluating the link annotations. All participants
reflected they were more inclined to look at the object images than the text when categorising the
object pairs, which may partly explain why image similarity proved a good predictor linking record
pairs (see Table 6). Participants noted that resemblances picked up by the models only contribute
meaningfully to a curator’s or historian’s work when a human partakes in the pipeline. While
helpful, multimodality is meaningless until a human has corroborated the results.

The “human” and “expert” aspects of the linking experiment revealed that participants per-
ceived different priorities and pursued varying strategies. These must be taken into account when
developing tools for labelling and developing record linkage for future applications in the GLAM
context. Curators, who were inspecting their own collections, required more fine-grained, precise
functionalities. Their interaction with objects is a more precise and objective endeavour compared
to how researchers and historians explore these collections. Researchers were more likely to en-
gage in the pursuit of exploration, and in the process made more creative associations between
objects that are particular to their interests. For example, they’d link a series of telephones because
they appear to have similar components, which enables a historian to investigate material culture
in relation to the history of technology.

7 Conclusion

This paper argued for the value of “specialist” models when analysing digital heritage collections.
We demonstrated the value of fine-tuning multimodal models on text and images derived from
museum data, focusing on records pertaining to the industrial past. We have shown how adapt-
ing SigLIP improved its overall capabilities for zero-shot classification and information retrieval.
When classifying images, it even outperformed much larger models such as gpt-4o. Fine-tuning
seems especially powerful to improve cross-modal capabilities of these models (image-to-text and
vice versa). Moreover, this paper explored a wide range of evaluation strategies: from using meta-
data as proxy-labels to expert annotations. We found that experts preferred the fine-tuned models
for linking (even though they were not aware which models produced which results). Interestingly,
experts relied to a large extent on visual cues when annotating the data, even though textual infor-
mation was also crucial for many examples. This observation also emphasises the importance of
multimodal approaches.

While LLMs are dominating public and scientific discourse, this paper argues that museums
and other GLAM institutions have other options at their disposal. Fine-tuning a small or mid-sized
open-source model might be a more effective and accurate strategy for making collections more
accessible and navigable.
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