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Abstract

Vast amounts of historical documents are being digitized with subsequent optical charac-
ter recognition (OCR), but the quality assessment of the results is challenging for larger
quantities. Ground Truth-based evaluation requires sufficient and representative data that
are expensive to create. Following recent work, we investigate whether confidence scores
automatically provided by text recognition systems can serve as a proxy. Based on an analysis
of the relationship between word error rates and word confidence scores for several OCR
engines, we find that the latter can serve as a useful indicator of OCR quality. In a second
step, we explore the scalability and reliability of combining Ground Truth and confidence
scores for quality assessment of text recognition in several experiments on a heterogeneous
dataset comprising almost 5 million pages of historical documents from 1456–2000. The
deeper analysis of the evaluation results provides insights into typical issues for OCR of
historical documents, suggesting potential directions for future work.

Keywords: optical character recognition, evaluation, confidence scores, word error rates,
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1 Introduction
The primary method for evaluating the quality of optical character recognition (OCR) involves
comparing outputs with manually transcribed reference texts, commonly referred to as Ground
Truth (GT) [16]. This approach facilitates the quantification of error rates by computing the edit
distance (Levenshtein distance) between the recognized text and the correct transcription. How-
ever, the production of GT data entails substantial effort, typically limiting such evaluations to
relatively small samples. Consequently, the validity and generalizability of the resulting quality
assessments diminish as the sample size decreases relative to the overall volume and heterogeneity
of the OCR-processed material. On the other hand, mass digitization in libraries and archives has
led to millions of pages of full-texts derived by OCR models. OCR quality has significant impact
on downstream tasks [12; 23; 26] such as full-text search or natural language processing such as
named entity recognition [5; 8], text and data mining or text analysis [10]. The source materi-
als spanning hundreds of years contain significant variations with regard to the visual properties,
typefaces, text lengths and publication dates that characterize them (see Figure 1).

Accordingly, representativeness by sampling is hard to achieve against the background of a
large collection comprising of highly heterogeneous source materials. This raises the question:
what alternative methods for OCR quality assessment exist that are scalable but also reliable?
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Figure 1: Examples of two historical documents, dated 1643 (left) and 1666 (right), illustrating
the challenges posed by diversity in visual quality, printed and handwritten letters, and layouts.

2 Related Work
The research community has long sought approaches to OCR evaluation that do not rely on GT
data. One such method leverages lexicons to identify out-of-vocabulary words, which are then
flagged as potential errors [1; 7]. While theoretically promising, this approach is often insufficient
for historical documents, which frequently exhibit extensive orthographic variation over time, and
for which period matching and machine readable historical dictionaries are scarce or even unavail-
able. Another method proposed in [19] uses character-level N-gram models, which must also be
trained per-language, exhibiting similar problems as dictionary-based methods in the context of
historical spelling variants. A SVM-based approach is pursued in [28], which requires a manually
classified garbage/non-garbage token training set. There are also combinations of the above; e.g.
[21] explores combining a dictionary approach with N-grams or SVMs.

More recently, confidence scores—internal metrics generated by OCR engines that serve as a
form of automated self-assessment for each recognized word—have been investigated as an alter-
native strategy [4], including the use of LLMs like BERT [9]. Pseudo-perplexity scores provided
by BERT are explored by [24] who show that it can be a meaningful metric for quality estimation
especially when appropriate lexical resources are not available. But how realistic and reliable are
these confidence scores across larger collections with high variation of document types? If such
scores are correlated with quality metrics derived from small samples of GT, it becomes possible
to measure the discrepancy between the OCR engine’s internal confidence computation and the
actual accuracy determined by comparison with GT. If this discrepancy remains relatively stable
across different inputs, the actual quality of OCR output may be approximated by appropriately
calibrating the confidence scores.

The primary objective of our experiment is to gather empirical insights through statistical anal-
yses and case-based examinations, and to identify the document characteristics that positively or
negatively influence recognition performance within the applied OCR workflow. These insights
aim to inform a strategy whereby documents that exhibit similar features are grouped and pro-
cessed using OCR models and workflows tailored towards the specific features of each group,
thereby optimizing recognition quality. The overarching goal is to gather knowledge about con-
figurations where document features and OCR engine or model choices match so that they can
be generalized to other similar documents, given that individual case-by-case OCR processing is
infeasible due to the quantity of the source material.

3 Data
The analysis of the relationship between word confidence scores (WC) and word error rates (WER,
see [17]) is conducted using the following GT datasets: an unreleased dataset provided by the
Vlaamse Erfgoedbibliotheken (VEB), which includes 75 pages of historical Belgian newspapers,
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a dataset from the OCR-D project (OCR-D-GT).1 and a dataset from the Berlin State Library
(OCR-D-GT-VD-SBB) consisting of 348 pages.2 The models employed for the subsequent eval-
uations include: a CNN-RNN model for Eynollah;3 the deep3_lsh4 model for Calamari;4 the
Reichsanzeigermodel for Kraken;5 and the german_print6 and deu_frak7models for Tesser-
act.8

The approximately 47,000 historical documents processed with OCR were previously deter-
mined to be single-column German-language works from VD projects9 based on their metadata
and a custom image analysis algorithm. The majority of the works is printed in Fraktur. They can
all be accessed via the Digitized Collections of Berlin State Library.10

4 WER–-WC Relationship Analysis
4.1 Evaluation of Methods

Prior to the evaluation of the OCR results for the 47,000 documents, it was necessary to assess
whether the confidence scores provided by the OCR engine used (in this case, Tesseract) can in-
deed serve as reliable indicators of recognition accuracy. Our approach to verification involves
examining the relationship between word confidence scores and word error rates (see Appendix B
for a detailed explanation of the latter).

We hypothesize that these metrics exhibit a consistent relationship: a low WER should corre-
spond to high confidence scores, reflecting accurate recognition, whereas a high WER, indicating
numerous errors, should be associated with lower confidence values. To examine this correlation,
we employed several smaller datasets with available GT and also processed them using various
OCR engines, including Eynollah [20], Calamari [27], Kraken [13], and Tesseract [22].

The dataset is partitioned into two subsets: a training set (blue crosses in Figure 2), comprising
70% of the data, used to develop a predictive model, and a test set (orange crosses), comprising the
remaining 30% and utilized to evaluate the model’s generalizability to unseen data. To quantita-
tively characterize this relationship, two regression models are applied: a linear regression model
and a second-degree (quadratic) polynomial regression model [4].

The linear regression model is defined as

wer(wc) = β1 · wc+ β0,

where β0 represents the intercept and β1 denotes the slope of the regression line. In addition to
the linear model, we also consider a second-degree polynomial regression to account for potential
nonlinear effects. The quadratic regression model is given by

wer(wc) = β2 · wc2 + β1 · wc+ β0,

1 https://github.com/OCR-D/gt_structure_text/releases/tag/v1.5.0
2 https://doi.org/10.5281/zenodo.17395956
3 https://zenodo.org/records/17194824
4 https://github.com/Calamari-OCR/calamari_models_experimental/tree/main/deep3_lsh4
5 https://ub-backup.bib.uni-mannheim.de/~stweil/tesstrain/kraken/reichsanzeiger-gt/
reichsanzeiger_best.mlmodel
6 https://ub-backup.bib.uni-mannheim.de/~stweil/tesstrain/german_print/
7 https://github.com/tesseract-ocr/tessdata/blob/main/deu_frak.traineddata
8 german_print and deu_frak models are not directly comparable in confidence output but internally consistent, cf.
K.
9 VD is the abbreviation for ”Verzeichnis der im deutschsprachigen Raum erschienenen Drucke”, i.e. all books of the
16th, 17th and 18th centuries printed in German-language countries. https://vd16.de, http://www.vd17.de/,
vd18.de.
10 https://digital.staatsbibliothek-berlin.de/
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where β2 is the coefficient of the squared term and captures any curvature in the relationship
between word count and error rate. Here, β1 remains the linear coefficient and β0 is the intercept
as before.

These models provide interpretable estimates of the relationship between OCR confidence
scores and actual recognition performance. The quadratic model, in particular, allows for mod-
eling more complex, nonlinear patterns that may occur at the extremes of the confidence scale.

To assess predictive performance, we report the coefficient of determination (R2), which in-
dicates the proportion of variance explained by the model, and the mean squared error (MSE),
reflecting average prediction error. Pearson’s correlation coefficient (r) measures the strength of
linear association between predicted and observed values, while Spearman’s rank correlation co-
efficient (ρ) captures monotonic relationships based on the relative ordering of the data, offering
robustness to non-linear trends and outliers. For each regression coefficient βj , we report the
corresponding p-value to assess statistical significance. Low p-values (typically < 0.05) suggest
that the predictor contributes meaningfully to the model. Regression plots include shaded 95%
confidence intervals to visualize the uncertainty around predictions; narrower intervals indicate
higher reliability. A detailed discussion of these metrics and their interpretation is provided in
Appendix C.

4.2 Evaluation of Tesseract

Tesseract [22] represents one of the most widely established [15; 18] OCR engines, making it a
relevant choice for this study. The experiment shown in Figure 2 is performed using the german-
_print model on the OCR-D-GT and VEB datasets, and the deu_frak model on the OCR-D-
GT-VD-SBB dataset.

Figure 2: Relationship between WER and WC evaluated with Tesseract on OCR-D-GT (left),
VEB (middle), and OCR-D-GT-VD-SBB (right).

Table 1 summarizes model performance metrics including correlation coefficients, R2, and
MSE for both linear and polynomial regressions across the three datasets. Table 2 provides the
corresponding regression coefficients and p-values, indicating the strength and significance of each
model term.

Dataset r ρ Lin. R2 Lin. MSE Poly. R2 Poly. MSE
OCR-D-GT -0.942 -0.914 0.877 0.002 0.884 0.002

VEB -0.949 -0.909 0.900 0.002 0.934 0.001
OCR-D-GT-VD-SBB -0.838 -0.674 0.649 0.003 0.629 0.003

Table 1: Performance metrics for the OCR-D-GT, VEB, and OCR-D-GT-VD-SBB datasets.
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Dataset Lin. β1 (p) Lin. β0 (p) Poly. β2 (p) Poly. β1 (p) Poly. β0 (p)
OCR-D-GT -1.034 (.000) 0.892 (.000) 0.248 (.115) -1.326 (.000) 0.971 (.000)

VEB -1.234 (.000) 1.045 (.000) 0.948 (.001) -2.346 (.000) 1.349 (.000)
OCR-D-GT-
VD-SBB -1.652 (.000) 1.565 (.000) -0.267 (.538) -1.309 (.022) 1.461 (.000)

Table 2: Regression coefficients with their corresponding p-values for the OCR-D-GT, VEB, and
OCR-D-GT-VD-SBB datasets.

The regression analyses reveal strong and consistent relationships between WC scores and
WER across all three datasets. The linear regression models generally perform well, with high
R2 coefficients, low MSE, and strong correlation coefficients (r and ρ), indicating that confidence
scores are meaningful predictors of recognition performance.

Among the datasets, the VEB dataset shows the highest predictive performance, with a linear
R2 of 0.900 and a slightly improved polynomial R2 of 0.934, along with the lowest MSE (0.001).
Correlation coefficients are also very strong (r = −0.949, ρ = −0.909), and the polynomial
model yields a significant quadratic term (β2, p = .001), suggesting that a mild nonlinear effect
may improve predictions in this case.

The OCR-D-GT dataset also performs strongly, with both linear and polynomial models achie-
vingR2 values above 0.87. The linear model already captures most of the variance (r = −0.942),
and themarginal gain from the polynomial fit is not supported by a statistically significant quadratic
term (p = .115). This supports the use of the simpler linear model for practical interpretation.

While the OCR-D-GT-VD-SBB dataset shows somewhat lowerR2 values (0.649 for the linear
model), the relationship between confidence scores and WER clearly remains present. Both linear
and rank correlations (r = −0.838, ρ = −0.674) indicate a meaningful trend, and the linear slope
is highly significant (p = .000). The reduced model fit may be partially explained by the use of
a different OCR model for this dataset, which may introduce differences in confidence calibration
or recognition behavior. Variations in the layout, typography, or quality of the source material
may also contribute to the observed variation in model performance. Still, the polynomial model
offers no substantial improvement and includes a non-significant quadratic term (p = .538), further
supporting the appropriateness of a linear interpretation.

Across all datasets, the linear slope coefficient (β1) is consistently negative and statistically sig-
nificant, confirming the expected inverse relationship: as OCR confidence increases, WER tends
to decrease. The quadratic terms, by contrast, are generally not significant and provide limited
practical benefit.

To sum up, linear regression offers a robust, interpretable, and statistically well-supported
model for predicting OCR error rates from confidence scores. Although polynomial models may
offer slight improvements in select cases, these gains are minor and come at the cost of increased
model complexity. The consistency of linear trends across varied datasets, including under dif-
ferent Tesseract models, supports the linear model as the most practical and reliable approach for
analyzing OCR performance. This evaluation using Eynollah, Calamari, and Kraken is presented
in Appendix D.

5 Confidence Score Evaluation on Historical Documents
5.1 Evaluation of the Complete Dataset

The analysis utilizes input data comprising confidence scores assigned by the OCR engine (Tesser-
act with the deu_frak model) to each recognized word and textline within a page of a work,
identified by PPN (Pica Production Number), an identifier assigned to records within the German
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library network Gemeinsamer Bibliotheksverbund (GBV). These scores range from 0 to 1, with
1 indicating perfect recognition accuracy. Figure 3 presents WC in the first row and TC in the
second. Within each row, the left-most plot shows the distribution of mean confidence values,
while the subsequent plots present the corresponding standard deviations, computed directly from
the original scores per PPN. A low standard deviation indicates consistent recognition certainty
across a PPN, whereas higher values point to greater variability, potentially due to image quality,
alternating typefaces, or layout challenges (see Appendix A).

Figure 3: The evaluation of the complete dataset of historical documents from 1456–2000.

To mitigate potential bias caused by PPNs with limited text content, a weighted analysis was
applied (see Appendix E). For word-level analysis, each PPNwas weighted by its total word count,
and for textline-level analysis, by the number of textlines. To assess the precision of our estimates,
we compute standard errors using an effective sample size that accounts for the uneven distribution
of weights across documents.

Two types of visualizations are employed: bar charts and density plots. The bar charts present
weighted histograms with confidence score intervals of 0.5, chosen to balance detail and smooth-
ness. The y-axis represents the total number of words or textlines per confidence interval, with er-
ror bars indicating uncertainty from weighted sampling. Both word- and textline-level histograms
reveal a concentration of confidence scores within the 0.75–0.9 range, indicating high certainty
of the OCR engine. For a more refined view of the data’s structure, kernel density estimation is
applied, yielding smooth probability distributions for WC and TC scores with means of 0.785 ±
0.004 and 0.791 ± 0.004, respectively.

A detailed analysis of OCR confidence in relation to document size is provided in Appendices F
and G. Confidence scores increase with document length up to a moderate size, stabilizing around
0.80–0.82 for documents of 52,500–165,000 words, 6,750–15,750 textlines, or 200–360 pages.
Medium-length documents exhibit the most consistent OCR performance, with narrow error mar-
gins indicating robust estimates. In contrast, very short or very long documents show greater
variability and lower confidence, often due to minimal text, complex layouts, degraded scans, or
heterogeneous content. These findings underscore document length as a key factor influencing
OCR quality and guide the identification of reliable subsets for downstream processing.
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5.2 Evaluation by Centuries

The dataset covers a broad time range from the 15th to the 20th century. Table 3 summarizes the
number of documents per century alongside the mean WC and TC values, each accompanied by
their standard error of the mean (SEM).

Century Number of publications Mean WC ± SEM Mean TC ± SEM

15th 225 0.665 ± 0.045 0.687 ± 0.046
16th 6565 0.700 ± 0.009 0.719 ± 0.009
17th 11993 0.706 ± 0.006 0.726 ± 0.007
18th 21533 0.793 ± 0.005 0.800 ± 0.005
19th 4382 0.854 ± 0.013 0.855 ± 0.013
20th 1786 0.883 ± 0.021 0.882 ± 0.021

Table 3: Evaluation of publication dates across centuries.

The statistical analyses for each century demonstrate a clear temporal trend, indicating a pro-
gressive improvement in recognition accuracy over time. In the earliest period examined, the 15th
century, the meanWC and TC values are relatively low (0.665± 0.045 and 0.687± 0.046, respec-
tively), reflecting the challenges associated with early printed materials. This is consistent with the
irregularities and lack of standardization characteristic of early typographic practices. As printing
techniques evolved during the 16th and 17th centuries, both confidence metrics show gradual im-
provement, with the mean WC rising to 0.706 and TC to 0.726 by the 17th century.

A notable increase in OCR accuracy is observed beginning with the 18th century, where both
WC and TC exceed 0.79. This improvement correlates with increased typographic standardization,
the invention of lithography and higher print quality during the Enlightenment period. The 19th
century continues this upward trajectory, reachingmeanWC and TC values of approximately 0.854
and 0.855, respectively, likely facilitated by the widespread adoption of mechanical typesetting
techniques and the steam-powered rotary printing press. The highest confidence values are attained
in the 20th century, with both WC and TC averaging around 0.883, indicative of modern printing
practices being disproportionally reflected in the training data for the model used.

An exemplary analysis of the 17th-century data is discussed in Appendix J. A comprehensive
overview of the genres represented in the dataset is provided in Appendix H. To further understand
the variability in OCR performance across different types of material, we also conduct a detailed
evaluation of subgenres within the dataset, presented in Appendix I. These analyses enable us to
assess how genre-specific characteristics may influence recognition accuracy, offering insights into
the strengths and limitations of the evaluated OCR models.

6 Conclusion and Further Work
This analysis focused on two aspects: first, examining the correlation between WER and WC, and
second, using the latter to evaluate a large dataset of historical documents. The WER–-WC rela-
tionship was analyzed across different GT datasets using OCR engines such as Tesseract, Eynol-
lah, Calamari, and Kraken. Linear and polynomial regressions revealed a clear negative correla-
tion: low WER values correspond to high WC scores, and vice versa. Subsequently, Tesseract’s
deu_frak model was applied to approximately five million pages of historical documents from
the 15th to the 20th century. Tesseract was chosen for its prevalence in OCR workflows and the
practical interpretability of its linear WER–-WC correlation.

An evaluation of nearly 47,000 historical documents examined which characteristics influence
recognition performance in standard OCR workflows. Publication date emerged as a key factor:
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typefaces and typographic conventions from the 18th century onward are more effectively recog-
nized by the Fraktur-based model than those from earlier periods. Our analysis further reveals a
clear upward trend in OCR quality over the centuries, reflecting advances in printing technology
and standardization. These insights can serve as a basis for developing grouping methods that cat-
egorize documents by features such as document length, genre, and publication date, enabling the
application of customized OCR workflows to enhance overall full-text quality.

The question of how genres, publication dates, and related features are represented across dif-
ferent models is undoubtedly highly relevant. However, this topic extends beyond the scope of the
present study and should be addressed in future research. A comprehensive investigation of this
nature would benefit from broad systematic comparisons and carefully established GT for each
genre and century, providing a valuable foundation for more detailed and fine-grained analyses.

It should be noted that although the present analysis was limited to a regression of two (or three)
variables, future work could employ hierarchical multiple regression to incorporate additional co-
variates. Potential parameters such as document length, genre, publication date, and variations in
typeface or language have already been identified in this paper. While [3] has taken initial steps
in this direction, future analyses should explicitly define independent and dependent variables and
account for potential moderators, such as binarization, that may alter the strength or direction of
their relationships.

The present analysis identifies several areas for improving OCR workflows in large-scale digi-
tization of historical documents. Key aspects include image preprocessing, layout analysis [6], and
the selection of suitable models and engines for text recognition. When binarization reduces im-
age quality and impairs recognition or layout detection, applying precise cropping focused on text
regions can markedly enhance results. For documents with complex typography, such as marginal
notes, ornaments, tables, or intricate layouts, more advanced layout analysis methods are needed.
Conventional, fast layout analysis tools, such as those provided by Tesseract, may be insufficient
to segment such structures accurately, whereas more sophisticated tools can substantially improve
segmentation and layout understanding.

Quality assessment of text recognition can be scaled by combination of GT data and OCR
confidence scores. The correlation between WER and WC supports reliable quality estimation
across diverse datasets and OCR engines. This approach enables large-scale evaluation of his-
torical collections, revealing trends related to document length, temporal variation, and typefaces.
Scalability depends not only on computational efficiency, but also on selecting OCRmodels suited
to specific historical contexts. As libraries continue to digitize vast collections, this method offers
a practical framework for improving full-text quality at scale. Its effectiveness, however, remains
limited by the availability and representativeness of GT datasets, which vary across periods and
genres. Nevertheless, efforts to expand and diversify GT resources hold the potential for more
detailed comparative analyses across historical contexts.

The source code used for this analysis is published on GitHub.11
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A Examples of Challenging Cases
While [11], [25], and [12] conducted a quality assessment of OCR accuracy in historical news-
papers, [2] in historical micro-data, [14] on incunabula, and [6] worked on printed serial source
published during a long time frame, a comprehensive evaluation of OCR quality across a broad
corpus spanning multiple centuries, document lengths, genres, complex layouts and typefaces has,
to the best of our knowledge, not yet been conducted.

Using 17th century examples as a case study, we aim to illustrate the challenges associated with
the diverse range of issues typically encountered in historical documents. In addition to Figure 1
shown in Section 1 depicting two problematic documents, dated 164312 (left) and 166613 (right),
Figure 4 displays three works exemplifying these complexities and highlighting the difficulties
arising while analyzing such materials.

From left to right, the first is Andechtige Gebet/ Gesenge und Collecten/ auff alle Tage in
der Wochen (1605),14 the second is Continens Epistolarum Festivalium pericopas by Christoph
Dauderstadt (1656),15 and the third is Hodosophia Christiana seu Theologia Positiva by Johann
Conrad Dannhauer (1666).16

The main challenges are dark, blurred characters and translucent printing, specks and pages
with black margins, heterogeneous documents with complex layouts, marginal notes and orna-
ments, changing typefaces (Fraktur and Latin) and languages, warped pages with curved textlines,
or having very little actual text such as on pages with portraits (with the name of the sitter), city
views (with legends) or sheet music (with lines of lyrics).

A detailed case study of the 17th-century documents is presented in Appendix J.
12 https://digital.staatsbibliothek-berlin.de/werkansicht?PPN=PPN1040867766&PHYSID=PHYS_
0094&DMDID=DMDLOG_0003
13 https://digital.staatsbibliothek-berlin.de/werkansicht?PPN=PPN856676292&view=
picture-double&PHYSID=PHYS_0182&DMDID=DMDLOG_0001
14 https://digital.staatsbibliothek-berlin.de/werkansicht?PPN=PPN717767116&PHYSID=PHYS_
0297&DMDID=DMDLOG_0001
15 https://digital.staatsbibliothek-berlin.de/werkansicht?PPN=PPN788451650&PHYSID=PHYS_
0474&DMDID=DMDLOG_0001
16 https://digital.staatsbibliothek-berlin.de/werkansicht?PPN=PPN856677698&PHYSID=PHYS_
0091&DMDID=DMDLOG_0001
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Figure 4: Examples of historical documents from the 17th century.

B Word Error Rates
The word error rate (WER) is a widely used metric for quantifying the accuracy of optical character
recognition (OCR) systems, calculated in analogy to the character error rate (CER; see [9], p. 6);
the latter is valued as an established measure for quality assessment [17]. WER represents the
proportion of recognition errors at the word level relative to a reference transcription referred to
as the ground truth. Formally, it is computed by counting the total number of word-level errors—
comprising substitutions, deletions, and insertions—and dividing this sum by the total number of
words in the ground truth transcription.

Mathematically, the WER is expressed as:

WER =
S +D + I

N
(1)

where:

• S is the number of substitutions (e.g., recognizing “Maus” instead of “Haus”),

• D is the number of deletions (missed words),

• I is the number of insertions (extra words inserted into the recognition output),

• N is the total number of words in the ground truth transcription.

This metric provides an interpretable measure of OCR performance: lower WER values indi-
cate higher accuracy, with zero representing a perfect recognition.

A key aspect of evaluating OCR performance is establishing what constitutes acceptable or
good recognition quality. According to established standards in the field, a character error rate
(CER) below 10% is generally considered indicative of high-quality OCR (see [3], p. 46). Simi-
larly, a word error rate (WER) of 20% or below is often regarded as a benchmark for acceptable
OCR accuracy, as noted by [23]. These values are derived from the tasks which the OCR results
serve. Though 10% CER cannot be considered as truly satisfying, it can be seen as providing ac-
ceptable results for full-text search. A word error rate of 20% means that every fifth word is not
correctly recognized. As a result on their research on improving OCR metrics in serial publica-
tions, [6] present final CER scores of 4,33% and final WER scores of 21,1%. However, it has to be
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noted that the transparent provision of CER and WER scores in historical document OCR is still a
desideratum [26].

Achieving these thresholds suggests that the OCR system produces results with minimal errors,
making the transcriptions reliable for further analysis or digital use. Conversely, higher error rates
may require additional post-processing or review to ensure data quality. These benchmarks serve
as useful guidelines for assessing the performance of OCR systems in various applications, partic-
ularly when working with historical materials where recognition challenges are more pronounced.

C Regression Model Evaluation Metrics
To evaluate the predictive performance of the models, several statistical metrics are employed,
each capturing different aspects of model quality.

First, the coefficient of determination (R2) is used to quantify how well the model explains the
variability in the observed data. It is defined as

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
,

where yi and ŷi denote the observed and predicted values, respectively, ȳ is the mean of the ob-
served values, and n is the number of observations. An R2 value of 1 indicates a perfect fit, while
a value of 0 suggests that the model explains none of the variance in the response variable.

The mean squared error (MSE) complementsR2 by quantifying the average squared difference
between the predicted and observed values:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2.

Lower MSE values indicate better predictive accuracy, with greater penalties assigned to larger
errors due to the squaring of residuals.

In addition to these error-based metrics, we compute the Pearson correlation coefficient (r) to
assess the strength and direction of the linear relationship between predicted and observed values:

r =

∑n
i=1(yi − ȳ)(ŷi − ¯̂y)√∑n

i=1(yi − ȳ)2
√∑n

i=1(ŷi − ¯̂y)2
,

where ȳ and ¯̂y are the means of the observed and predicted values, respectively. Pearson’s r ranges
from −1 to 1, with values close to 1 indicating a strong positive linear association.

To capture potential monotonic but non-linear relationships, we also include the Spearman
rank correlation coefficient (ρ), which evaluates the strength of a monotonic association based on
ranked data. It is defined as

ρ = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)
,

where di is the difference between the ranks of yi and ŷi. By relying on ranks instead of raw values,
Spearman’s ρ is more robust to outliers and is well-suited for detecting non-linear yet consistently
ordered patterns.

For each regression coefficient βj (j = 0, 1, 2), we report the associated p-value to test the null
hypothesis H0 : βj = 0, i.e., that the coefficient has no effect. A low p-value (typically < 0.05)
suggests that the corresponding predictor significantly contributes to themodel, providing evidence
against the null hypothesis.

The regression plots presented in the analysis include shaded regions around the fitted lines
representing 95% confidence intervals. These intervals illustrate the uncertainty associated with
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the predicted regression line: if the experiment was repeated under similar conditions, we expect
the true regression line to lie within the shaded bounds 95% of the time. Narrower intervals indicate
greater certainty and higher reliability of the model in those regions.

D WER–WC Evaluation with Eynollah, Calamari and Kraken
D.1 Eynollah

The experiments shown in this section are performed using Eynollah [20] (see Figure 5).

Figure 5: Relationship between WER and WC evaluated with Eynollah on the OCR-D-GT (left)
and VEB (right) datasets.

Dataset r ρ Lin. R2 Lin. MSE Poly. R2 Poly. MSE
OCR-D-GT -0.502 -0.487 0.192 0.002 0.138 0.002

VEB -0.812 -0.905 0.649 0.002 0.646 0.002

Table 4: Performance metrics for the OCR-D-GT and VEB datasets in the case of Eynollah.

Dataset Lin. β1 (p) Lin. β0 (p) Poly. β2 (p) Poly. β1 (p) Poly. β0 (p)
OCR-D-GT -2.581 (.000) 2.526 (.000) 20.307 (.000) -40.399 (.000) 20.119 (.000)

VEB -2.169 (.000) 2.171 (.000) 1.010 (.359) -3.785 (.036) 2.796 (.000)

Table 5: Regression coefficients with their corresponding p-values for the OCR-D-GT and VEB
datasets in the case of Eynollah.

The results, shown in Tables 4 and 5, indicate that, for both datasets, the linear regression
model generally performs on par or better than the polynomial model. For the VEB dataset, the
linear model achieves a high R2 value of 0.649, nearly identical to the polynomial model (0.646),
with both models yielding the same mean squared error (0.002). For the OCR-D-GT dataset, the
linear model also slightly outperforms the polynomial model in terms ofR2 (0.192 vs. 0.138), with
identical MSE. Notably, theR2 values for both models are substantially higher on the VEB dataset
than on the OCR-D-GT dataset, indicating a much stronger relationship between the variables
in the VEB data. Additionally, the p-values for the polynomial term in the VEB dataset are not
significant, suggesting that the added complexity of the polynomial model does not provide a
meaningful improvement. Overall, the linear regression model is the preferred choice for both
datasets.
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D.2 Calamari

In the following subsection, we employ Calamari [27] with the deep3_lsh4 model (see Figure 6).

Figure 6: Relationship between WER and WC evaluated with Calamari on the OCR-D-GT (left)
and VEB (right) datasets.

Dataset r ρ Lin. R2 Lin. MSE Poly. R2 Poly. MSE
OCR-D-GT -0.722 -0.551 0.509 0.002 0.277 0.003

VEB -0.922 -0.814 0.796 0.005 0.802 0.005

Table 6: Performance metrics for the OCR-D-GT and VEB datasets in the case of Calamari.

Dataset Lin. β1 (p) Lin. β0 (p) Poly. β2 (p) Poly. β1 (p) Poly. β0 (p)
OCR-D-GT -1.649 (.000) 1.710 (.000) 15.047 (.007) -30.334 (.004) 15.367 (.002)

VEB -1.706 (.000) 1.809 (.000) 1.296 (.217) -3.896 (.032) 2.714 (.001)

Table 7: Regression coefficients with their corresponding p-values for the OCR-D-GT and VEB
datasets in the case of Calamari.

Tables 6 and 7 summarize the regression analysis for Calamari across both datasets. In the VEB
dataset, both linear and polynomial models yield high R2 values (0.796 and 0.802, respectively)
and identical mean squared errors, indicating that either model captures the relationship between
variables effectively. For the OCR-D-GT dataset, the linear regression model demonstrates a clear
advantage, with a notably higher R2 (0.509) and lower MSE compared to the polynomial model.
The lack of statistical significance for the polynomial terms in the VEB data further suggests that
increasing model complexity does not enhance predictive power. The consistently higher R2 val-
ues observed for the VEB dataset point to a stronger association in that subset. In summary, linear
regression is sufficient for both datasets, and compared to Eynollah, Calamari achieves substan-
tially higher R2 values, particularly on the OCR-D-GT dataset, indicating a better overall model
fit.

D.3 Kraken

Finally, we evaluate Kraken [13] with the Reichsanzeiger model (see Figure 7).
Tables 8 and 9 present the regression results for Kraken across both datasets. For the OCR-

D-GT dataset, the polynomial regression model outperforms the linear model, achieving a higher
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Figure 7: Relationship between WER and WC evaluated with Kraken on the OCR-D-GT (left)
and VEB (right) datasets.

Dataset r ρ Lin. R2 Lin. MSE Poly. R2 Poly. MSE
OCR-D-GT -0.745 -0.818 0.543 0.027 0.646 0.021

VEB -0.385 -0.625 0.102 0.011 -0.026 0.013

Table 8: Performance metrics for the OCR-D-GT and VEB datasets in the case of Kraken.

Dataset Lin. β1 (p) Lin. β0 (p) Poly. β2 (p) Poly. β1 (p) Poly. β0 (p)
OCR-D-GT -3.681 (.000) 3.966 (.000) -20.059 (.000) 31.269 (.000) -11.019 (.000)

VEB -9.787 (.000) 9.907 (.000) -678.101 (.00) 1320.854 (.00) -642.768 (.00)

Table 9: Regression coefficients with their corresponding p-values for the OCR-D-GT and VEB
datasets in the case of Kraken.

R2 value (0.646 vs. 0.543) and a lower mean squared error, indicating that a more complex, non-
linear relationship better captures the data structure. In contrast, the VEB dataset shows very low
R2 values for both models, with the polynomial regression even yielding a negative R2 (-0.026).
A negative R2 suggests that the model fits the data worse than a simple horizontal mean line,
highlighting a lack of meaningful association between the variables in this subset. The regres-
sion coefficients for the VEB dataset also display large magnitudes, further indicating instability
and poor model fit. Overall, these results suggest that, unlike Calamari and Eynollah, Kraken re-
quires a more complex model to adequately fit the OCR-D-GT data, while neither model provides
a satisfactory fit for the VEB dataset.

In summary, for Eynollah, linear regression provides a reasonable fit, with stronger associa-
tions in the VEB dataset than in OCR-D-GT. Calamari achieves higher R2 values overall, espe-
cially on OCR-D-GT, and linear models are generally sufficient. In contrast, Kraken benefits from
a polynomial model for OCR-D-GT, but both models perform poorly on the VEB dataset, with neg-
ative R2 indicating a lack of predictive power. Overall, Calamari shows the best model fit, while
Kraken’s results highlight the need for more complex modeling or indicate limited correlation in
some cases.

E Weighted Confidence Scores Analysis
To account for the varying lengths of documents associated with each PPN and to reduce biases
arising from smaller documents, we employ a weighted statistical approach throughout our evalua-
tion. This method ensures that documents with longer texts contribute proportionally to the overall
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statistics, thereby minimizing the influence of outliers and underrepresented samples.
Let xi ∈ [0, 1] denote the confidence score for the i-th PPN, with wi ≥ 0 representing its

corresponding weight, defined as the number of words for word-level analysis or the number of
textlines for textline-level analysis. The weighted mean confidence score is calculated as:

x̄w =

∑n
i=1wixi∑n
i=1wi

To measure the dispersion of confidence scores, we compute the weighted standard deviation,
where deviations are given by di = xi − x̄w:

σw =

√∑n
i=1wid2i∑n
i=1wi

The effective sample size, a correction accounting for the distribution of weights, is calculated
as:

neff =
(
∑n

i=1wi)
2∑n

i=1w
2
i

Using this, the standard error of the mean (SEM) is estimated as:

SEMw =
σw√
neff

For visualization, we construct weighted histograms by summing the weights of all confidence
scores falling into each bin. The error bars for each bin are computed as:

Errorj =
√∑

i∈Bj

w2
i

This approach extends the conventional Poisson error (√nj) used in unweighted histograms,
appropriately reflecting the contribution and variability of each observation.

To further explore the distribution of confidence scores, we apply kernel density estimation
(KDE) with weights. The weighted KDE at a point x is given by:

f̂(x) =
1

h
∑n

i=1wi

n∑
i=1

wiK

(
x− xi

h

)
where K(·) is the Gaussian kernel and h is the bandwidth parameter. The resulting density

curve is normalized so that its total area equals one. Additionally, we report the 25th, 50th (median),
and 75th percentiles to summarize the central tendency and variability of the confidence scores.

This weighted statistical framework ensures that our analysis accurately reflects the data’s het-
erogeneity and provides robust estimates of model performance across documents of differing
sizes.

F Word and Textline Analysis
Understanding how OCR confidence varies with document size is essential for developing adap-
tive processing workflows, especially when working with heterogeneous and large-scale historical
corpora. This analysis aims to investigate whether document length serves as a reliable predictor
of OCR confidence, and to examine to what extent it reflects the underlying quality and regularity
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Figure 8: Relation of document length by word count (left) and textline count (right).

of the source material. Figure 8 presents two bar plots illustrating the relationship between docu-
ment length, quantified by word count (left) and textline count (right), and the corresponding mean
OCR confidence scores.

For each bin, the mean value of the target variable is determined, and the corresponding error
bars represent the standard error of the mean.

Overall, both distributions demonstrate a consistent pattern: OCR confidence scores tend to
increase with document length up to a certain point, after which the trend first stabilizes and later
becomes more variable. This is especially apparent in the left plot, where mean confidence scores
rise from approximately 0.70 in documents with fewer than 7,500 words to over 0.82 in medium-
length documents consisting of around 52,500 to 165,000 words. Similarly, the right plot shows
confidence scores improving up to about 0.81 for documents containing 6,750 to 15,750 textlines.

The narrower error bars observed in the mid-range length categories suggest that these groups
are well-represented within the dataset, resulting in more reliable estimates. In contrast, greater
variability and sporadic confidence scores in documents with very small or very large lengths, par-
ticularly those with extreme counts, reflect smaller sample sizes and increased uncertainty. Such
patterns are common in historical corpora, where very short or very long documents often corre-
spond to outliers such as title pages, indexes, or composite works. Further analysis reflecting the
page count is presented in Appendix G.

G Page Count Analysis
To complement our analysis of word and textline counts (see Appendix F), Figure 9 examines the
relationship between OCR confidence and document length, measured in terms of page count. The
left panel illustrates the weighted mean confidence at word level, while the right panel depicts the
corresponding confidence at the textline level. Both metrics are aggregated across binned intervals
of page counts. Error bars represent the standard error of the mean, calculated based on effective
sample sizes that account for the weighting scheme.

The observed patterns closely mirror those identified in the analyses of word and textline
counts, yet they also provide additional insights into how document extent influences recognition
quality. In both panels, there is a visible upward trend in confidence scores for documents ranging
from approximately 20 to 150 pages. This increase likely reflects improved OCR performance on
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Figure 9: Weighted mean OCR confidence stratified by document page count, for word-level (left)
and textline-level (right) measurements.

medium-length texts, which may benefit from more consistent typography or better preservation
of original formatting.

Within the intermediate range, approximately 200 to 360 pages, confidence scores tend to
plateau around 0.80–0.82, with relatively small standard errors. This stability suggests that OCR
accuracy is reliably maintained within this document length segment. Conversely, documents
exceeding ∼500 pages display more fluctuating and less stable confidence values, as evidenced
by broader error bars. Such variability may stem from diverse factors, including the inclusion
of ephemeral materials, title pages, or suboptimal scan quality in shorter documents, as well as
composite volumes, degraded pages, or complex layouts in longer works.

An intriguing observation is the slight decline in confidence for documents exceeding approx-
imately ∼700 pages, accompanied by increased uncertainty. This trend indicates that extremely
long documents may pose particular challenges to OCR systems, potentially due to heterogeneity
in layout, content complexity, or deterioration over extended text runs. Moreover, many of these
very lengthy works are bibliographies, catalogs, dictionaries, and similar types of documents that
often contain multiple fonts, languages, and complex formatting. Such characteristics can further
complicate the recognition process, leading to higher error rates and reduced confidence in the
OCR output for these extensive texts.

In conclusion, the analysis based on page count corroborates and extends earlier findings:
medium-length documents tend to yield the highest and most consistent OCR confidence scores,
whereas both shorter and longer works are associated with lower and more variable recognition
quality. These insights are useful for the curation and preprocessing of large historical corpora,
as they can inform strategies for selecting reliable subsets for downstream analysis or flagging
documents that may require manual review or reprocessing.

H Evaluation of Genres
The dataset encompasses a total of 215 unique genres, reflecting a broad diversity of publication
types. However, the distribution of publications across these genres exhibits a long-tail behavior,
with a few genres dominating in publication count while many others are represented by only a
small number of documents. This skewed distribution highlights the variability in genre prevalence
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within the dataset.
In the German library system, genre classification for works printed before 1800 should be

performed according to a list of genre terms provided by the ”Arbeitsgemeinschaft Alte Drucke”
(AAD);17 these terms are part of the metadata. However, due to changing librarian practices, these
genre terms are not available for all works, especially not for those printed in the 16th century. For
works printed in the 19th century or later, no genre terms are available. Works without a specified
genre were therefore labeled as Unbekannt (Unknown). To illustrate the most prominent genres,
Table 10 presents the top five genres with the highest publication counts. These genres includeUn-
bekannt (Unknown), Gelegenheitsschrift (Occasional Writing), Leichenpredigt (Funeral Sermon),
Lyrik (Poetry), and Flugschrift (Pamphlet), which together account for a significant portion of the
dataset.

Genre Number of publications Mean WC ± SEM Mean TC ± SEM

Unbekannt 13137 0.804 ± 0.007 0.808 ± 0.007
Gelegenheitsschrift 6880 0.743 ± 0.009 0.751 ± 0.009
Leichenpredigt 5249 0.718 ± 0.010 0.732 ± 0.010

Lyrik 3650 0.774 ± 0.013 0.784 ± 0.013
Flugschrift 2723 0.707 ± 0.014 0.727 ± 0.014

Table 10: Top five genres with the highest publication counts in the dataset.

The Unbekannt category exhibits the highest average OCR confidence (0.804 word-level,
0.808 textline-level), suggesting that metadata completeness is not directly tied to recognition
quality and that this category includes more recent works. Gelegenheitsschriften and Leichen-
predigten show lower confidence scores (0.74–0.75 and 0.71–0.73, respectively), likely due to
layout variability, typographic complexity and having little text per work. Interestingly, Lyrik (Po-
etry) exhibits higher average OCR confidence scores (0.774/0.784) than both Gelegenheitsschrift
and Leichenpredigt. This suggests that the typically simpler, single-column layout and minimal
typographic complexity of poetic works, along with their good preservation state, may offset po-
tential layout-related difficulties and contribute to higher recognition confidence. Flugschriften
(Pamphlets), although historically important, register the lowest OCR confidence among the top
five genres (0.707/0.727). They are typically brief and often in degraded physical condition; com-
bined with a wide variability in typefaces and formatting, this likely contributes to lower scores.

Across all genres, textline-level confidence scores are consistently higher than word-level
scores. This may reflect the OCR engine’s greater reliability in detecting interword spacing, mak-
ing the segmentation and recognition of entire textlines more robust than that of individual words.

A detailed evaluation of subgenres within the dataset is provided in Appendix I.

I Evaluation of Subgenres
Figure 10 displays the weighted mean OCR confidence scores for various genre-subgenre com-
binations, with word-level (blue) and textline-level (red) scores shown alongside standard error
bars. The analysis covers the five genres in the dataset that include subgenre annotations: Gele-
genheitsschrift (Occasional Writing), Streitschrift (Polemic Writing), Kommentar (Commentary),
Ordensliteratur (Publications by Religious Orders), and Dissertation (Dissertation). These ac-
count for a subset of the 215 total genres in the corpus, indicating that subgenre-level classification
is comparatively rare.
17 https://verbundwiki.gbv.de/spaces/GAD/pages/73990159/Gattungsbegriffe+der+
Arbeitsgemeinschaft+Alte+Drucke+beim+GBV+und+SWB
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Figure 10: Evaluation of genre-subgenre combinations.

The results highlight substantial variability in OCR performance across subgenres. High confi-
dence scores, exceeding 0.80, are observed for subgenres such as Gelegenheitsschrift: Einladung
(Invitation), Gelegenheitsschrift: Gedenken (Memorial), and Kommentar: theol. (Theological
Commentary), likely reflecting the presence of well-structured and typographically consistent con-
tent. In contrast, lower confidence values, particularly below 0.70, are found in subgenres such as
Gelegenheitsschrift: Promotion (Doctoral Promotion) and Dissertation: theol. (Theological Dis-
sertation), which may contain more complex or deteriorated source material. A consistent pattern
emerges across nearly all subgenres: textline-level confidence scores are slightly but systemati-
cally higher than their word-level counterparts.

The aggregated ”Other” category, summarizing subgenres with fewer than 20 instances each,
shows relatively high confidence scores (∼0.79 for words, ∼0.80 for textlines), although its inter-
pretive value is limited due to the heterogeneity of the underlying documents.

Overall, these findings suggest that subgenre-aware approaches may enhance quality control
in large-scale digitization efforts.
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J Evaluation of the 17th-Century Data
Analysis of confidence score distributions across 11,993 PPNs in the 17th century (see Figure 11)
reveals consistently high recognition confidence for both words and textlines, with mean scores
predominantly ranging from 0.6 to 0.9. The weighted mean confidence score is 0.706± 0.006 for
words and 0.726 ± 0.007 for textlines, both slightly lower than the overall dataset means of 0.785
± 0.004 and 0.791 ± 0.004, respectively. This suggests that the subset contains more complex
or challenging material. The low standard deviations at both levels indicate stable and reliable
confidence estimates, with generally low variability across instances.

Figure 11: Evaluation of the historical dataset covering the years 1601–1700.

Figure 12: Publication counts covering the years 1601–1700.

Figure 12 displays publication counts per year throughout the 17th century, illustrating a gen-
eral upward trend in publication activity. However, a closer examination of the period correspond-
ing to the Thirty Years’ War (1618–1648) reveals a noticeable stagnation and even a slight decline
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in publication counts compared to the preceding and subsequent years. This pattern suggests a po-
tential disruptive effect of the war on the production and dissemination of printed materials, likely
due to widespread social, economic, and political instability.

Following the end of the war, publication activity gradually resumes its upward trajectory, cul-
minating in a pronounced peak at the end of the century. Notably, this post-war period coincides
with the beginning of the New High German era (starting around 1650), which marked a signif-
icant phase in the standardization of both written and spoken German. The increasing linguistic
uniformity, alongside growing stability and the recovery of intellectual and cultural life, likely
contributed to the revitalization of the print industry. This convergence of sociopolitical recovery
and linguistic development may explain the sustained rise in publication output during the second
half of the century.

Figure 13: Evaluation of genre-subgenre combinations covering the years 1601–1700.

Figure 13 shows that confidence scores vary notably across subgenres, with textline confi-
dence consistently exceeding word confidence. Subgenres such as ”Gelegenheitsschrift: Tod”
and ”Gelegenheitsschrift: Hochzeit” achieve the highest scores, likely due to their standardized
layouts and clearer print quality. In contrast, subgenres with lower confidence, such as ”Gelegen-
heitsschrift: Abschied”, may reflect greater variability in formatting or print quality. Compared
to the whole dataset, the 17th-century subgenres generally exhibit lower confidence scores, with
fewer subgenres exceeding 0.80, indicating that OCR performance is more challenged by the ma-
terial from this period.

As shown in Figure 14, the 17th century exhibits a distinctive pattern in genre-based OCR
confidence scores. Out of the 215 genres present in the overall dataset, 121 are represented in
this century, reflecting a remarkable diversity of printed material during this period. Unlike other
centuries, where ”Unbekannt” is typically the most prevalent genre and achieves the highest con-
fidence scores, ”Leichenpredigt” emerges as the leading genre in both frequency and recognition
certainty in the 17th century. Specifically, ”Leichenpredigt” achieves mean confidence scores of
approximately 0.70 for both word and textline recognition. This may be attributed to the relatively
standardized structure commonly found in funeral sermons of the era, which facilitate more ac-
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curate text recognition. In contrast, ”Einblattdruck” shows much lower mean confidence scores
(0.59 for words, 0.63 for textlines), suggesting that single-sheet prints are more challenging for
OCR due to their varied layouts, typefaces used, print quality, and decorative elements.

If compared to the results for the entire dataset (Table 10), it becomes evident that the mean
confidence scores for the most frequent genres in the 17th century are generally lower than those
observed across all centuries. For example, ”Unbekannt” and ”Leichenpredigt” have mean word
confidence scores of 0.804 and 0.718, respectively, in the full dataset, compared to 0.71 and 0.70
in the 17th century.

K Discussion of the Tesseract models
For the bulk of the processed works discussed in this paper, we used Tesseract 4 with the deu_frak
model and to a lesser extent the german_print model. The deu_frak model is a newer LSTM-
based Tesseract 4 model trained from scratch on actual Ground Truth, whereas deu_frak is a
conversion of the Tesseract 3 model trained on synthetic data. These models are not directly com-
parable in operation, including confidence calculation. In hindsight, the choice of deu_frak was
suboptimal but we finished the processing for consistency and switched to german_print for
newer datasets. While the confidence output is still consistent within works processed with either
model, considering the opaque training parameters and legacy codebase used for ported Tesseract
3 models, we strongly recommend against directly comparing Tesseract 3 and Tesseract 4 model
confidence behavior.

Beyond the historical printing developments described in Appendix 5.2, the observed trend of
increase in OCR accuracy is also influenced by the training data of the OCRmodel. The deu_frak
model, synthetically trained on 19th and 20th century Fraktur fonts, performs better on more recent
printed material whose visual features align more closely with the model’s learned representations.
This correspondence further reinforces the improvement in recognition quality over time.
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Figure 14: Evaluation of the genres covering the years 1601–1700.
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