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Abstract

In this paper, we investigate the applicability of linguistic stylometry methods to authorship
attribution in music. We compare the use of delta methods involving the the analysis of token
frequencies with static embeddings generated by distributional semantic models (Word2Vec
and Doc2Vec) for the stylometry analysis of music using a symbolic representation. For
this purpose, a classical music dataset derived from the MusicNet dataset is used. Applying
the cosine delta approach, an F1 score of 0.63 was obtained in a classification approach to
authorship attribution. Static embeddings achieved an Adjusted Rand Index of 0.42 using
a clustering approach. In both cases, pre-processed extracted chords were used as tokens.
We hypothesize that the frequency of using certain chords provides sufficient information
to achieve reliable results in symbolic music stylometry analysis. Several methods of chord
preprocessing were investigated: augmentation, lemmatization, and n-gram forming, with
lemmatization being shown to be the most effective. The proposed methodology influenced
by linguistics combined with the chord pre-processing methods can also be used for other
tasks in symbolic music information retrieval.

Keywords: musical stylometry, symbolic music processing, representations of music,
delta methods, static embeddings

1 Introduction

Musical stylometry is a branch of music data mining that deals with the stylistic characteristics
of musical pieces belonging to different eras or composers. One of the central tasks in musical
stylometry is authorship attribution, based on a feature representation [2]. Originally, stylometry
comes from linguistics, where a large number of attribution methods have been developed, ranging
from statistical approaches to pattern recognition techniques [4; 6; 10; 20]. Many of these methods
have been adapted and used for musical data processing.

Identifying composers relates to several tasks, the main ones being music authorship attribu-
tion and composer classification. Conceptually, both of these tasks aim to answer the question:
Who is the author of a particular piece of art? However, composer classification focuses on build-
ing a system that performs classification accurately rather than providing insights about why the
authorship attribution was made. In contrast, attribution of authorship to music focuses more on
feature representation and analysis as a whole, highlighting the most informative features known
as style markers [2; 3; 18]. Therefore, unsupervised approaches such as clustering and visualiza-
tion are commonly used in addition to classification in stylometry analysis within the context of
music authorship attribution. Moreover, following the stylometric methodology borrowed from
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linguistics to determine the authorship of a specific work, stylistically similar and representative
examples are selected for comparison [6].

In the 21st century, composer classification is more popular among researchers, and they often
train machine learning systems on large datasets [8; 14; 29]. Some researchers, using advances
in computer vision, have trained systems based on images of musical scores and achieved good
classification results [28]. However, from a musical stylometry perspective, there have not been as
many studies, but those existing are of high quality and demonstrate diverse feature representations
(information theory based features, statistical features, and acoustic features) [2; 3]. So far, a
limited number of linguistic methods have been applied to the analysis of music.

Our goal is to focus on well-established methods in linguistics: delta methods involving anal-
ysis of token frequencies in texts [1; 5; 11; 12; 13; 16; 25] and static embeddings [15; 19; 21;
23] to demonstrate their applicability to music stylometry and to obtain quantitative results on a
constrained but representative dataset.

2 Methodology

In this section, we describe our methodology for the music attribution task, the dataset chosen, the
extracted features, and the linguistic methods we have applied to music data. Figure 1 demonstrates
a processing pipeline for this task.

2.1 Data

For an experiment in musical attribution, we need a dataset of the music symbolic representation
(e.g., MIDI, musicXML, or ABC notation). We used an open source data set MusicNet [27] that
consists of 330 freely licensed classical music recordings. Originally, the data set was used to solve
the problem of automatic musical transcription [26; 27], but it also contains MIDI files that are of
interest to us.

According to the stylometry methodology [20], to solve the attribution task, the samples of
potential authors should be chosen from a limited set according to the time period or style of a
potential unknown composition. We have decided to analyze romantic-style compositions (quintets
and quartets) listed below indicating composition id (there are totally 38 compositions):

1. Schubert [Ids: 1727, 1728, 1729, 1730, 1742]: Piano Quintet in A major (2. Andante, 3.
Scherzo Presto, 4. Andantino Allegretto, 5. Allegro giusto); String Quintet in C major (3.
Scherzo Presto).

2. Dvorak [Ids: 1916, 1918, 1919]: String Quartet No 10 in E-flat major (1. Allegro ma non
troppo, 3. Romanza, 4. Finale).

3. Brahms [Ids: 2138, 2140, 2148, 2149, 2150, 2151]: String Quartet in C minor (2. Romanze
Poco adagio, 4. Allegro); Piano Quartet No 1 in G minor (1. Allegro, 2. Intermezzo Allegro
ma non troppo, 3. Andante con moto, 4. Rondo alla Zingarese: Presto).

4. Faure [Ids: 2166, 2167, 2168, 2169]: Piano Quartet No 2 in G minor (1. Allegro molto
moderato, 2. Allegro molto, 3. Adagio non troppo, 4. Allegro molto).

5. Beethoven [Ids: 2313, 2314, 2315, 2365, 2366, 2368, 2376, 2379, 2381, 2382, 2383, 2384,
2431, 2432, 2433, 2494, 2497, 2621, 2622]: String Quartet No 15 in A minor (1. Allegro,
2. Allegro ma non tanto, 3. Adagio Molto Adagio; Andante); String Quartet No 12 in E-flat
major (1. Maestoso - Allegro, 2. Adagio ma non troppo e molto cantabile, 4. Allegro); String
Quartet No 8 in E minor (1. Allegro, 2. Adagio Molto adagio, 4. Presto Finale, Presto, alla
breve); String Quartet No 13 in B-flat major (1. Adagio ma non troppo - Allegro, 2. Presto,
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Figure 1: The proposed methodology for authorship attribution in musical stylometry using lin-
guistic approach: extracting and processing chords, applying delta methods or distributional se-
mantics models, analyzing results through solving the tasks of clusterization and classification .
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3. Andante con moto, ma non troppo - Poco scherzoso, 4. Allegro Alla danza tedesca -
Allegro assai); String Quartet No 16 in F major (1. Allegretto, 2. Vivace, 3. Lento assai -
cantante e tranquillo); String Quartet No 11 in F minor (1. Allegro con brio, 4. Larghetto
espressivo - Allegretto agitato - Allegro); String Quartet No 7 in F major (1. Allegro, 2.
Allegretto vivace e sempre scherzando);

2.2 Token extraction

In this research, we extract musical chords from pieces (chunks) using the music 21 toolkit [7]
which supports their automatic extraction from scores/MIDI files. This is accomplished using
the chordify method which extracts chords for each note by adding all notes that are sounding
at the same time. It is important to note that this is a note by note representation that captures
melody and surrounding context rather than the more common notion of chord as a harmonic
block that spans multiple notes of the melody. This is sometimes referred to as salami slicing and
can be visualized as taking vertical columns of a piano roll to form ”chords”. In the remainder
of the paper, this is what is meant by the term chord. Analogously to the approaches used in
linguistics, we hypothesize that information regarding only the chords used, without considering
their duration, may be sufficient for investigations in musical stylometry. The extracted chords
without any processing are referred to as *Usual’. We propose the following pre-processing options
for these chords: augmentation, lemmatization, and n-gram forming.

1. Augmentation: This process involves adding information about the octave in which the
chord’s bass note is played. In other words, information about the initial sounding octave is
added to the chord.

2. Lemmatization: Borrowing the term from linguistics, lemmatization refers to reducing a
word to its base form. In the context of musicology, we apply this term to transform chords
into a narrower set of general chords. This process involves the following transformations:
all chords labeled ”<Chord> with octave doublings” are converted to the standard chord
name ”<Chord>”; specific octave descriptors (”Perfect Triple-octave”, ”multiple octaves™)
become ”Perfect Octave”; and specialized chords of the form ”enharmonic equivalent to

<Chord>” and ”enharmonic to <Chord>” are transformed to simply ”<Chord>".

3. N-gram forming: The application of n-gram models from linguistics may also be effective
in computational musicology. N-gram forming involves combining the nearest n chords into
a single token with a shift of one.

After the chord processing stage, the result is referred to as a token sequence of the musical
chunk.

2.3 Delta Methods

Delta methods using word frequencies are popular in linguistics to identify the authors of texts. In
our research, four delta methods are used: the Burrows delta, Eder’s delta, Argmon’s delta, and
the Cosine delta. The algorithm of finding similarities and dissimilarities between documents is
the same for each method.

« D is a dataset of documents of various authors, the texts chosen must be related to unknown
or test texts (e.g., similar style or time period) based on linguistic stylometry methodology

[5].
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* Each document d € D is described as a set of token frequencies F'(d) = (fi(d), f2(d),
f3(d), ..., fn(d)), where f; is the token frequency ¢ in d, n is the number of the most frequent
tokens in the entire dataset t; € D, ¢ € 1..n. In addition, the tokens are ordered in descending
order based on the total frequencies in the entire dataset.

* Toreduce variance of frequencies between tokens (this is particularly important due to Zipf’s
law [17]) the z-transformation (or z-score) is used to standardize and normalize features:
fild) = i
(B = DS ®

9fi

where f; is the average value of the frequency of the token ith in the data set and ¢ 1, is the
standard deviation (therefore, z; = 0 and 0,, = 1). The effectiveness of normalization and
standardization for text attribution has been demonstrated in [13].

* Delta methods are used to evaluate the similarities between two documents. Having calcu-
lated the numerical estimate of distance between all documents, the resulting distance square
matrix M of dimension |D| can be used to analyze attribution applying unsupervised and
supervised methods of machine learning [12].
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Burrows’s delta (or classical delta) [5] is the first method of the family calculating Manhattan
distance:
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Chords Delta Method | Best max tokens | ARI AMI Vi1
Classical 210 | 0.1340 | 0.1979 | 0.3228
Usual Quadratic 250 | 0.1462 | 0.1176 | 0.2599
Eder 30 | 0.1579 | 0.2248 | 0.3526
Cosine 70 | 0.1531 | 0.2442 | 0.3773
Classical 600 | 0.1462 | 0.1176 | 0.2599
Augmented Quadratic 30 | 0.1773 | 0.1531 | 0.2942
Eder 100 | 0.1673 | 0.1730 | 0.3132
Cosine 400 | 0.1630 | 0.2639 | 0.3951
Classical 170 | 0.1979 | 0.1633 | 0.3057
L emmatized Quadratic 170 | 0.1897 | 0.1736 | 0.3114
Eder 30 | 0.2208 | 0.2731 | 0.3979
Cosine 10 | 0.2452 | 0.3234 | 0.4402
Classical 8 | 0.1665 | 0.0751 | 0.2366
2-gram (with lemmatization) Quadratic 8 | 0.1654 | 0.2509 | 0.3838
Eder 6 | 0.1343 | 0.2295 | 0.3667
Cosine 9 | 0.0951 | 0.1711 | 0.3183
Classical 2 | 0.1108 | 0.1754 | 0.3185
3-gram (with lemmatization) Quadratic 31 0.0285 | 0.0720 | 0.2332
Eder 3| 0.0805 | 0.1192 | 0.2762
Cosine 30 | 0.1462 | 0.1176 | 0.2599

Table 1: Results of clustering experiments using various preprocesed chords and different delta
methods.

2.4 Static embeddings

The second linguistic approach used in the research is the creation of static embeddings using
Word2Vec [23] and Doc2Vec [19] techniques. Embeddings are vectors in a vector space, which
are created by training systems based on the distributional hypothesis [15].

The following algorithms are used to generate static embeddings:

1. Continuous Bag-of-Words (CBOW): it predicts the current word based on the context (us-
ing tokens as the context in indicated window size).

2. Skip-gram: it predicts the context tokens (surrounding words) based on a given token.

3. Paragraph Vector Distributed Memory (PV DM): this method is similar to the CBOW
algorithm. However, it also encodes information about the paragraph (document) into a
separate vector. This document vector is then used in the process of predicting the target
token. As a result, not only word embeddings but also trained document embeddings are
generated.

4. Paragraph Vector Distributed Bag-of-Words (PV DBOW): when training with a Semi-
Supervised approach, the context is also selected within a defined window. However, instead
of predicting context tokens based on the central token (as in the Skip Gram algorithm), the
prediction is based on a learnable document vector.

A key feature is that these algorithms create fixed embeddings (static embeddings). These

embeddings are trained within a specific window size in a vector space of a defined dimension
(embedding size). Importantly, these embeddings are not changed depending on the context when
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Model Chords Window Size | Emb Size | ARI AMI V1
Usual 9 100 | 0.0827 | 0.1726 | 0.3197
Word2Vec: CBOW Lemmatized 5 20 | 0.1810 | 0.1942 | 0.3335
. Usual 10 180 | 0.0908 | 0.1736 | 0.3222
Word2Vec: Skip-Gram | | - ized 7 300 | 0.2181 | 0.2309 | 0.3632
Usual 2 10 | 0.1781 | 0.1445 | 0.2977
Doc2Vec: PV DBOW | Lemmatized 3 30 | 0.2572 | 0.1366 | 0.2789
Lemmatized 7 5| 0.3017 | 0.2625 | 0.3744
Usual 10 30 | 0.2031 | 0.2295 | 0.3604
Usual 9 10 | 0.3002 | 0.2533 | 0.3806
DoczVec: PV DM Lemmatized 21 10 | 0.2726 | 0.3874 | 0.4943
Lemmatized 15 60 | 0.4219 | 0.3456 | 0.4632

Table 2: Results of clustering experiments using semi-supervised algorithms to build static em-
beddings for stylometry analysis.

the vectors are received. The main advantage of static embeddings is that we can train systems
on a limited dataset. The resulting vectors will then contain information only from the sequences
of tokens provided. This is exactly what we need for stylometry analysis. The system ”absorbs”
information from the provided examples and the ones that have to be analyzed in terms of their au-
thorship. This is not possible with contextualized embeddings, such as those generated by models
like ELMO [24] or BERT [9], because these larger models require more data.

Unlike Doc2Vec algorithms, which are also trained to represent information about the para-
graph, Word2Vec algorithms only produce static embeddings of the tokens themselves. Therefore,
in this research, we use averaging of token embeddings within chunks. In this way, each musical
chunk, considered as a sequence of tokens, is represented as a vector of embedding size.

2.5 Unsupervised and supervised learning

Once delta methods have been applied, the features are the vectors distances from one chunk to
all the others. After training Word2Vec or Doc2Vec models, the features are the resulting static
embeddings. Using the feature matrix, we then apply clustering or classification algorithms.

In stylometry analysis, the Ward clustering algorithm is often used. A popular metric for cluster
analysis in stylometry is the Adjusted Rand Index (ARI), with the Adjusted Mutual Information
(AMI) and V-measure (V1) as additional metrics. ARI is a robust metric for clustering evaluation,
which accounts for chance agreement and provides a normalized score between -1 and 1 to quantify
the similarity between predicted and ground-truth cluster assignments. Its adjustment for chance
makes it superior to the raw Rand index when comparing clustering solutions as it penalizes random
groupings and provides a more accurate reflection of clustering quality.

For classification algorithms, preference is given to classic machine learning classification
algorithms due to the limited amount of data. Therefore, we use a Leave-One-Out strategy to
analyze the results. The quality metrics are accuracy (ACC), precision-macro (P), recall-macro
(R), and f1-macro (F1).

3 Experiments and results

Our research involved three main experiments: the application of delta methods and clustering,
the application of static embeddings and clustering, and the application of both types of methods
followed by classification.
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Figure 2: Results of delta methods application using lemmatized chords.

3.1 Delta Methods and clusterization

The first experiment investigates the applicability of delta methods and cluster analysis. Then, the
proposed chord preprocessing algorithms (augmentation, lemmatization, and n-gram forming) are
evaluated.

Table 1 shows the results of the experiment. The column ”Best max tokens” indicates the
optimal hyperparameter value (the maximum number of the most frequent tokens in the dataset)
for the system with the best performance metrics. Lemmatization proves to be the most effective
preprocessing technique: with its use, any delta method shows higher metrics. The improvement
is up to 60% in the main metric, ARI, compared to using tokens (chords) without preprocessing,
and 17% in the V1 metric. However, both augmentation and 2-gram preprocessing also improved
the quality, but not as noticeably as with lemmatization. Additionaly, forming 3-grams or higher
did not result in substantial quality improvements.

Cosine delta, which provides the best results (ARI=0.25, AMI=0.32, V1=0.44), is proved to
be the most successful method. Figure 2 shows that the selection of the optimal maximum number
of tokens is complex and depends on the choice of the delta method. Generally, it requires further
research. This contrasts with linguistics, where there is a clear pattern: the more tokens used,
the higher the clustering quality [13]. This difference can be explained by the fact that there are
fewer tokens in music data processing (around 300 usual chords and only 250 lemmatized ones).
In addition, some tokens may appear only once in a single chunk.

3.2 Static embeddings and clusterization

In this experiment, we used only usual and lemmatized chords. This decision is due to the fact that
n-gram models and augmented chords did not provide a considerable improvement in performance.
Before generating static embeddings, the model (Word2Vec or Doc2Vec) is trained using one of the
available algorithms. The hyperparameters “number of epochs” and “minimum token frequency”
were fixed at 200 and 1, respectively. The first parameter was chosen empirically, based on the
size of the training data. The second parameter is set to 1 because the total number of tokens used
for the research is small. Experiments were conducted with the most important hyperparameters:
”window size” and “embedding size”. It is worth noting that the models were trained on the entire
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Figure 3: UMAP visualization of embedding space for Doc2Vec model (PV DM algorithm with
window size = 21 and embedding space = 10).

Features Params | Classifier ACC P R F1
Classical Delta 170 SVM 0.6579 | 0.2867 | 0.4667 | 0.4954
170 Random Forest 0.6842 | 0.5741 | 0.4700 | 0.4950
Quadratic Delta 170 SVM 0.5789 | 0.7214 | 0.3833 | 0.4464
170 Logistic Regression | 0.6579 | 0.6407 | 0.5833 | 0.6084
Eder Delia 30 Logistic Regression | 0.6316 | 0.6111 | 0.6067 | 0.6006
170 SVM 0.6579 | 0.6027 | 0.4967 | 0.5188
Cosine Delta 10 Logistic Regression | 0.6842 | 0.6817 | 0.6167 | 0.6269
100 SVM 0.6053 | 0.5567 | 0.5167 | 0.5344
_ (15, 60) | Logistic Regression | 0.5526 | 0.5485 | 0.5200 | 0.5281
Word2Vee: CBOW | 5 "50)" | Gradient Boosting | 0.6316 | 0.5055 | 0.4633 | 0.4736
oL (5,90) | Logistic Regression | 0.4474 | 0.5393 | 0.5333 | 0.4754
Word2Vec: Skip-Gram | " )| Random Forest 0.6053 | 0.5200 | 0.4000 | 0.4273
. (21, 10) | SVM 0.5526 | 0.5795 | 0.5133 | 0.5176
Doc2Vec: PVDBOW | ;1) | Logistic Regression | 0.5526 | 0.4716 | 0.4667 | 0.4650
. (21, 10) | Random Forest 0.7105 | 0.5330 | 0.5033 | 0.5063
Doc2Vec: PV DM (7,20) | Gradient Boosting | 0.6316 | 0.5395 | 0.5567 | 0.5436

Table 3: Results of classification experiments with Leave-One-Out strategy for various features
using lemmatized chords. For delta features, the maximum number of the most frequent tokens is
indicated in the column ”Params”; for distributional semantics models - (window size, embedding
size).
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dataset, regardless of the potential for musical pieces we intended to analyze. This does not result
in data leakage, as these distributional semantic models do not require class labels for training.
Therefore, these models are only used to encode information within a specific embedding space.

Static embeddings provided better results than delta methods. Table 2 demonstrates the re-
sults of clustering. The PV-DM algorithm performed particularly well, achieving a result of 72%
higher for ARI and 12% higher for the V1 score than the best result obtained using delta methods.
Similarly to the previous experiment, the results based on lemmatized chords are superior to those
based on usual chords.

Figure 3 shows a visualization of the embedding space using the UMAP algorithm [22]. We can
see that most of the musical pieces by Faure and Schubert are identified satisfactorily. However,
Dvorak’s pieces are confused with Beethoven’s ones.

3.3 Classification approach to musical stylometry

The classification task, when applied to musical data with Composer labels, is often referred to as
Composer Classification. However, in the context of stylometry research, a classification approach
is frequently used with clustering. This combination serves to further validate the conclusions,
stylistic markers and features that have been identified.

As lemmatized chords were shown to produce the best results, only they are are used for the
classification approach.

Due to the extremely limited amount of data available for the classification, we decided to use a
Leave-One-Out strategy. This means that the classifier is trained on (n — 1) instances and predicts
the class of the remaining single instance. After all iterations are complete, performance metrics
(accuracy, macro precision, macro recall, and macro F1-score) are calculated.

Since the primary goal is not to build the best possible classifier (as it would be in a Composer
Classification task), the hyperparameters of the classifiers are not tuned. Instead, only the default
parameter settings are used.

The results are demonstrated in Table 3. Due to space constraints, we only show the results of
the two top performing classifiers we experimented with. Despite distributional semantic models
having achieved the best metrics’ values in clustering, cosine delta in combination with logistic
regression (using balanced class weights) provided the best F1-score (0.63) and recall (0.62) in
classification. Quadratic delta with an SVM (using an RBF kernel and balanced class weights)
had the highest precision (0.72). Only in terms of accuracy did static embeddings combined with
Random Forest achieve the best result (accuracy = 0.71). However, in a classification task with
imbalanced classes, the F1-score is the most informative metric.

4 Conclusion

The results of this study demonstrate the applicability of linguistic approaches to musical stylom-
etry, specifically delta methods and static embeddings. Similar to linguistics, these methods allow
performing stylometry analysis with limited datasets, while still achieving reasonably high results.
The proposed pre-processing algorithms for chords performed well, particularly the application of
lemmatization to musical chords. However, future research should consider encoding rhythmic
information within the tokens, which could improve the results of authorship attribution.

Static embeddings and distance matrices obtained using delta methods have been shown to be
effective for solving classification tasks, among others.
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