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Abstract

For many decades, musicologists have engaged in creating large databases serving different
purposes for musicological research and scholarship. With the rise of fields like music
information retrieval and digital musicology, there is now a constant and growing influx of
musicologically relevant datasets and corpora. In historical or observational settings, how-
ever, these datasets are necessarily incomplete, and the true extent of a collection of interest
remains unknown — silent. Here, we apply so-called Unseen Species models (USMs) from
ecology to areas of musicological activity. After introducing the models formally, we show
in four case studies how USMs can be applied to musicological data to address quantitative
questions like: How many composers are we missing in RISM? What percentage of medieval
sources of Gregorian chant have we already cataloged? How many differences in music prints
do we expect to find between editions? How large is the coverage of songs from genres of a
folk music tradition? And, finally, how close are we in estimating the size of the harmonic
vocabulary of a large number of composers?

Keywords: Unseen Species Models, Computational Musicology, RISM, Gregorian Chant,
Corpus Studies, Chord Vocabularies, Archives, Databases

1 Introduction

Many research questions in the Computational Humanities rely on distributional data about cultural
objects and artefacts, often gathered in observational rather than controlled experimental studies.
Found distributions of these objects are thus heavily shaped by uncertainties associated with his-
torical transmission processes, including missingness (e.g. because something lies hidden in some
basement) or loss (e.g. because a library burnt down). What’s worse, if there is no external record
about a missing or lost item, there is no way of knowing that it had ever existed. In order to under-
stand the representativeness of observed samples in the humanities, it is thus of great interest to be
able to gauge how much we should expect to be missing.

This problem structurally resembles similar issues in species ecology, where researchers need
to estimate the number of species from a limited set of incomplete samples. These belong to the
class of Unseen Species models (USMs), which have recently been employed in cultural contexts
as well: in computational literary studies, for estimating the true size of Shakespeare’s vocabulary
[9], most prominently in a comparative study of loss of medieval chivalric epics across different
European cultures [24], loss in mid-19th century Russian poetry [33], or library records [25]. Be-
yond literary studies, the size of the Dutch East India Company [46] or the population of a specific
prison in Brussels [22]. In musicology, these have been used to compare the diversities of secular
and sacred late medieval Italian repertoire [7]. While awareness of this “borrowing” from ecology
is growing, the potential of these models to give a better grasp of the unknown, to guide quanti-
tative musicological research, and to provide new insights for data collection efforts is far from
realised.
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In this contribution, we probe the usefulness of USMs for musicology in four different case
studies using sets of musicological data. We aim to demonstrate what kinds of questions can be
addressed by applying USMs in music research, and to provoke discussions about the strengths and
limits of this approach. To that end, we first introduce the methodology in Section 2, and apply it to
four musicological case studies in Section 3, namely the RISM and Cantus databases (Section 3.1),
a dataset of differences between 19th-century music prints (Section 3.2), a dataset of folks music
sessions (Section 3.3), and, finally, a large corpus of harmonic annotations in pieces from different
composers (Section 3.4). We discuss our results in Section 4 and conclude with their implications
and potential for (computational) musicology (Section 5).

2 Methods: Unseen species models in the Computational Humanities

Translating musicological inquiries for unseen-species models means asking the following ques-
tion:

* How many distinct cultural units (unknown species) did we not observe yet?

This question is critical to the representativeness of musicological data. For example, the Cantus
database has “only” indexed a few hundred of the tens of thousands of extant manuscripts of Gre-
gorian chant [16] — but chant is supposedly a highly conserved, stable tradition. How well is the
entire Gregorian repertoire covered by these sources?

Modeling the abundance of species — cultural units. In virtually any kind of collection of
cultural objects, some units are highly abundant (very common; e.g., the same composition occurs
in many manuscripts, the same song is known across an entire region, the same musical patterns
occurs over and over in a composer’s work), while others are rare, possibly occurring only once
or twice. The (unknown) probability to encounter an instance of a certain unit — observing a
specimen of a species — is thus proportional to the number of times that unit occurs in the whole
tradition (also generally unknown). This is called the relative abundance (or relative frequency)
p; of a unit ¢, and probability theory ensures that p; > 0 and ZZ p; =1,fori =1,...,5, where
S stands for the total number of cultural species (the quantity of interest here).! For an observed
collection of n cultural units 7 with abundances X;, it holds that

> Xi=n. (1)

i=1...8

For some — possibly even most — species, X; = 0, i.e. they are not observed. While they were at
some point present, written down or perhaps sung by someone, they don’t figure in the particular
dataset/catalog/songbook observed. The absolute frequency of species with a particular abundance
r is defined as:

fr=1{Xi | Xi =r}]. ()

This implies that f; is the number of species observed only once (singletons)? and f> is the number
of species observed twice (doubletons). With f; we denote the (unknown) number of species that
was not observed. It logically follows that the total number of distinct species observed in the
sample, Sops, is given by

Sobs: Z fr' (3)

r=1...00

! Relative abundances have been generalised to cover also the probability of species being detected in the first place [3].
2 In the context of corpus studies in natural language processing (NLP), singletons are sometimes called hapax legomena
(Greek for ‘read only once’) [32].
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This, finally, allows us to define our quantity of interest, S: the true size of the musical tradition
(for which we are only looking at a limited sample) measured in terms of the number of distinct
musical items (songs, manuscripts, harmonies, etc.). It is simply the number of items observed
plus the number of items not observed:

S = Sobs + fo- 4

Since Sgps is known (Eq. 3) and the true value of fy cannot be known, finding .S relies on estimating
fo based on limited samples. Estimating fo is where individual Unseen Species models from
ecology come into play.

Modeling species incidence. For some musicological scenarios, it seems more appropriate to track
incidence, i.e., the presence or absence of some musical unit in a sample, instead of counting how
many times each individual species was observed. Incidence-based models look at m different
samples and re-define f, to represent the number of species observed in r samples (instead of r
times in a single sample in the case of species abundance). We only care about whether a cultural
unit has appeared in a sample.

Decisions such as choosing between abundance and incidence are the responsibility of the

experiment designer(s) and depend on factors that can better be addressed by theory than by em-
piricism [8].
Chao estimators. Popular estimators for species abundance and incidence are the Chao estimators
[1], which have already been applied in the computational humanities [23; 24]. Among those,
“Chao1”® is one particular way of estimating .S from the relative frequency counts f,.,r > 0. It is
formally defined as:

-
2- fo’

that is, it estimates the number of species yet unseen from the numbers of species observed only
once or twice.* From Equations 4 and 5 follows that the number of unseen species is given by

S = Sobs + (5)

fom S =5~ S, ®)
2-fa
and we define species coverage (the overall ratio of species already observed) as
~ Sobs
= ) 7
¢="3 7)

As mentioned above, the estimator is based solely on the count of singletons (/f1) and double-
tons (f2). The basic intuition behind this assumption is that distributions of counts usually have a
‘long tail’: few items occur very frequently and many items occur rarely [4], and the probability
mass available for yet unseen species should follow from the length of the tail.®

Crucially, this estimator is non-parametric [1]: it can be used regardless of the underlying
distribution of relative abundances or incidences p;. This is crucial because this distribution is
usually unknown and allows for the application of Chaol across a wide range of research areas.

3 Other common methods are the Abundance Coverage Estimator (ACE) [2], Jackknife [43], and Good-Toulmin es-
timators [15; 39]. Here, we opt for using Chao estimators because a) they provide a conservative lower bound [24];
b) because they have already been used in other applications of the unseen species model to the humanities; and c)
because they are straightforward to compute; and d) because their interpretation naturally flows from their formal logic.
A python impelementation is available in the Copia library [23].

“ In cases where both abundance and incidence is studied, f, for incidence is commonly denoted by @, and the
incidence-based estimator is called “Chao2” [1; 3].

> A constructive proof derived from Good-Turing smoothing [11; 12] is provided in [3].
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The Chao estimates for fj are lower bounds [3]: they provide the minimum expected number of
unseen species (we could still be missing more). Consequently, the estimated species coverage
constitutes an upper bound: a value of 0.5 means that we have observed at most half of all the
musical species in some collection or repertoire.

Relationship to Type-Token Ratio. We also provide the numbers of types (n;) and tokens (nr)
— corresponding to incidence and abundance data, respectively — for the respective corpora to
calculate the the type-token ratio (TTR = N;/Nr) that has been used in computational linguistics
and computational humanities to characterise lexical diversity [34].

TTR only considers the global number of tokens and thus corresponds to the expected num-
ber of individuals per species under a uniform model. While both Chaol and TTR characterise
diversity from categorically distributed data, their relation is not straight-forward. A dataset with
a few very dominant “species” but many rare ones may have a low TTR ratio but at the same time
a high estimated proportion of unseen species; a dataset where everything occurs twice or a few
times but rarely just once will have very low fj estimate but a high TTR. As they both do relate to
underlying diversity, we do expect TTR and Chaol to still be correlated, but one should not expect
this correlation to be particularly strong.

Accumulation curve.

3 Applications for Computational Musicology

A crucial step in applying Unseen Species Models from ecology to cultural contexts in the human-
ities in general and to musicology in particular is to draw convincing analogies of what the concept
of species corresponds to. Here, we draw an analogy between biological species and some mu-
sic(ologic)al entity in four case studies relevant for different branches of musicological research.
We start by looking at unseen composers and repertoire in large collections of music sources (histor-
ical musicology), move on to differences in music prints (music philology), followed by analyzing
sessions of folk musicians (ethnomusicology) and harmonic vocabularies in different repertoires
(music theory).

3.1 Case Study 1: Databases and archives

Empirical conclusions drawn about a musical tradition from a database rely on its representative-
ness. While one cannot know what is not represented in a database (this effort could just be spent
better by adding the given items to the database!), we can use the Unseen Species models to es-
timate how much of whatever entity we define as the “species” is not covered by the data source.
We can thus quantify how much “cultural diversity” has not yet been documented. We present
here reports from two of the largest musicological databases: RISM, by far the largest database of
musical sources, and the Cantus database of Gregorian chant.

3.1.1 RISM: Counting composers

How many composers were active in Europe since the Renaissance? How many composers are
we still to discover whose works lie undetected on some attic or archive shelf? There is no bet-
ter database to answer such questions than the Répertoire International des Sources Musicales
(RISM),® a database of more than 1,500,000 musical sources assembled across nearly 3,000 hold-
ing institutions. In this setting, each composer (identified by a RISM authority record) can be
thought of as a species, and the presence of a composer’s work in a source catalogued in RISM is
then an observation of that species. For a given institution, the composer observation count is the
number of sources held by that institution in which the composer appears.

®https://rism.online/
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The resulting dataset contains records for 48,524 composers’ with works observed across 2,933

holding institutions, with a total of 2,009,343 observations of composers appearing in sources.?
A composer is a singleton if they are observed in only one source in a single institution, and a
doubleton if observed exactly in two sources, whether in the same institution or not.
RISM Results. Aggregated over the entire dataset, the Chaol estimate gives us a lower bound of
78,432 species — composers, with 95% confidence interval widths of (—844.7,+795.3).% With
48,524 composers observed, that implies an fj of 29,908 (—844.7, +795.3) unobserved composers
and a coverage upper bound of 0.619 (£+0.01) — we have so far recorded in the RISM database
at most some 62% of all composers, indicating that there might be plenty of musical diversity to
discover.

If we aggregate results only over the 10 largest institutions, each of which holds 20,000+
composer records, we get an estimated S = 32,989 (—515.5,+589.5) total composers with
Sobs = 20, 778 composers observed, with a similar coverage of 0.630 (+0.01). For the 100 largest
institutions, in turn, with Sgps = 34, 090, we obtain S = 53,561 (—693.2, +715.8) and coverage
0.635 (+0.01). We interpret this to indicate as sampling error: the combined largest music libraries
are still not sampling the same space of composers with extant works as all the holding institutions,
including the smaller ones. Otherwise we should see a similar estimate of total composers around
80,000 as for the complete dataset, with the corresponding coverage upper bound of approx. 0.26.
This implies that smaller institutions play an important role in documenting the overall diversity
of composers. Only when we aggregate data over the top 600 institutions do we get the Chaol
estimate of at least 70,000 composers.

We compute the TTR and Chaol coverage Sops/S for each RISM institutions, and from these
value pairs we measure how these metrics are related. While there is some relationship between
TTR and Chaol coverage, it is weak, and has a very high variance. For the 100 largest institu-
tions, Pearson’s » = —0.46 and non-correlation can be rejected (p-value for non-correlation using
scipy.stats.linreg: < 10~°), and the same holds for all institutions, though the relationship
is even weaker (r = —0.295, p < 10730). The relationship between TTR and Chaol1 is shown in
Figure 1.

3.1.2 Cantus: “biodiversity” of Gregorian chant

The Cantus database'? is a large-scale project for cataloguing Gregorian chant that has been running
since the mid-1980s [26; 27]. It primary mechanism is the Cantus ID, which identifies instances of
the same chant — element of Gregorian repertoire — across multiple manuscripts. Cataloguing a
manuscript means primarily assigning Cantus IDs to all chants recorded therein. Chant manuscripts
often have more than 1,500 chants, so cataloguing even a single manuscript requires considerable
effort.

Gregorian chant was — is — an immense tradition. Despite the initial Carolingian project of
Gregorian chant as a tightly controlled expression of a common identity [21][p.514-523], over
the centuries and across Latin Europe, repertoire choices diversified greatly, to the extent that
one can often identify the provenance of a manuscript directly from the repertoire choices. This
combination of diversity and scale permits one to think of the Gregorian tradition in terms of
ecology, and ask: to what extent has the Cantus database covered the existing “biodiversity” of
chant?

7 In the usual sense of the term: persons who are identified as authors of written musical works. We do not consider
phenomena such as recording folk musics, or rather: we accept editorial decisions made by those who catalogued records
in RISM.

8 This includes reprints, but a reprint is in fact a valid sign of the underlying “abundance” of a composer.

9 All confidence intervals in this paper are computed using bootstrap with 1000 iterations, as implemented in the copia
library.

" https://cantusdatabase.org/
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Figure 1: RISM results for the relationship between the Chaol coverage upper bound and linear
proxies for diversity: the Type-Token Ratio (TTR). Note that the upper right triangle plot (a) is
empty: this is because at very high TTRs, the Chaol coverage cannot be very high: even with
the most uniform distribution possible, at TTR > 0.5 there will always be at least one singleton
contributing to f;, so coverage upper bound cannot be 1.0, and at TTR close to 1.0, nearly all
tokens will contribute to f; and coverage upper bound will thus approach 0 (lower right corner).
However, the correlation between TTR and Chaol coverage is not caused by this: when we restrict
ourselves to institutions where TTR < 0.6 and coverage < 0.8, where empirically this effect does
not reach, we still get Pearson’s r of —0.21 and p < 1071°,

In this abstraction, the Cantus IDs are species, and manuscripts serve as samples. We ask: how
much of chant repertoire has been catalogued, and how much remains to be discovered? Chant
repertoire is categorised according to genre, its function in liturgy. For example: antiphons are
short and simple chants that are sung before and after psalms; responsories are longer and more
ornate chants that are sung between blocks of psalm-antiphon pairs. Individual chant genres had a
varied history as liturgy developed: for instance, the Offertory verses (a genre sung in Mass) fell out
of use after the 13th century [21, p.121]. It therefore makes sense to quantify the (in)completeness
of the Cantus database according to the individual main genres.

In this case study, we apply an incidence-based approach over abundance. Instead of count-
ing how many times each Cantus ID appeared in the dataset, we count its presence or absence in
manuscripts. A chant recorded in only one source, even if used twice or more times, is still consid-
ered a singleton and contributes to f;. Preferring incidence follows naturally from the structure of
chant data. Each manuscript acts as a sample from one site: a particular ecclesiastical community.
A chant being used in more than one liturgical position in a certain church should not necessarily
imply the particular chant would be more likely to be used in other churches. We use CantusCor-
pus v0.2 [5], a dataset derived from the Cantus database that is most widely used for computational
chant research [6; 17; 28; 29].

Cantus results. We report the Chaol upper bounds on coverage for individual genres on Can-
tusCorpus v2.0 in Table 1. The genres of chant for one type of liturgy, the Divine Office (upper
section of Table 1), exhibit overall lower maximum coverage than the chants for Mass (lower sec-
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Genre CIDs Mss. Tokens TTR STR f1 f2 Cov. Conf. Int.

A 11157 230 202688 0.055 0.021 4714 1542 0.569 (-0.01, +0.01)
R 5098 211 101353 0.050 0.041 2151 714 0.553 (-0.02, +0.02)
\" 8162 213 93708 0.087 0.026 3919 1068 0.502 (-0.02, +0.02)
A% 925 184 34983 0.026 0.199 292 127 0.679 (-0.05, +0.05)
I 599 180 9803 0.061 0.301 250 106 0.595 (-0.07, +0.06)
Office 25804 240 442535 0.058 0.009 11188 3558 0.555 (-0.01, +0.01)
In 206 49 1930 0.107 0.238 41 5 0572 (-0.17,+0.13)
InV 285 32 1153 0.247 0.112 82 32 0.745 (-0.09, +0.08)
Gr 153 90 2087 0.073 0.588 28 9 0.731 (-0.19, +0.15)
GrvV 206 68 1438 0.143 0.330 53 11 0.664 (-0.11, +0.11)
Al 404 71 2016 0.200 0.176 159 62 0.624 (-0.07, +0.07)
AlV 37 28 116 0.319 0.757 24 3 0.193 (-0.12,+0.29)
of 157 42 1844 0.085 0.268 25 17 0.811 (-0.14, +0.12)
ofv 262 12 707 0.371 0.046 44 39 0.902 (-0.06, +0.07)
Cm 197 42 2059 0.096 0.213 27 8 0.729 (-0.15, +0.11)
CmV 153 4 173 0.884 0.026 135 16 0.172 (-0.06, +0.07)
Tc 46 21 272 0.169 0.457 10 6 0.792 (-0.30,+0.21)
TcV 202 21 822 0.246 0.104 44 27 0.844 (-0.09, +0.08)
Mass Pr. 2267 113 14617 0.155 0.050 634 230 0.694 (-0.03, +0.03)
All 28056 261 457152 0.061 0.009 11809 3785 0.565 (-0.01, +0.01)

Table 1: Unseen species estimates for CantusCorpus v0.2 data, split by genre. We report the
number of distinct chants (Cantus IDs) for each genre, the number of manuscripts (because we are
using incidence data), the number of tokens (in this case: total number of chants catalogued), the
Type-Token Ratio (which is computed from chant counts), additionally the Sample-Type Ratio,
which is an analogy for TTR for incidence data (ratio of the sample count to species count), the
singleton and doubleton counts used for Chaol estimation, and the resulting Chaol upper bound
on coverage and the left and right widths of its 95% confidence interval. Note how the coverage
varies between genres (especially those for the Mass Propers).

tion of Table 1) This is quantitative confirmation that Mass repertoire was more stable, possibly
because the Mass is a public liturgy while the Divine Office is primarily a private prayer for the
clergy, and thus changing Office repertoire may have been easier (though still with bureaucracy
involved [14]), though interestingly the Introit genre, which starts the Mass, seems to be covered
less well.

Neither the Type-Token Ratio, nor its incidence-based analogy Sample-Type Ratio, are good
predictors of the Chaol coverage upper bound. Linear regression on TTR vs. Chaol coverage has
a slope of —0.77 and non-correlation can just about be rejected (p = 0.005), but the variance is
large (see Figure 2a); for STR, non-correlation cannot be rejected (p = 0.42; see Figure 2b).

3.2 Case Study 2: Ontology of differences in music prints

In this case study, we examine visual/notational differences between six editions of Beethoven’s
Bagatelles Op. 33, Nos. 1—5. The editions we used are the first print by Bureau d’Arts [sic]
et d’Industrie (c. 1803), Zulehner (c. 1808), André (c. 1825), Schott (c. 1826), Haslinger (c.
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(a) Type-Token Ratio (TTR) per chant genre on Can-
tusCorpus v0.2 plotted against the Chaol coverage
upper bound. Linear regression shows a best fit at
slope —0.78, with the p-value for non-correlation
(zero slope) at 0.005, but the variance of the linear
estimate is large.

(b) Sample-Type Ratio, an analogy of TTR for
incidence-based data. In this case, linear regression
shows a best fit at slope —0.20, with the p-value for
non-correlation at 0.42.

Figure 2: CantusCorpus results for the relationship between the Chaol coverage upper bound and
linear proxies for diversity: the Type-Token Ratio (TTR), and its analogy for incidence data, the
Sample-Type Ratio (STR). While the TTR has a correlation of p = —0.77 and thus non-correlation
can be rejected (p = 0.005), predicting the Chaol coverage upper bound still has a very large
variance. STR is not correlated at all (p = 0.42).

1845) and Breitkopf & Hértel (1864).!! The data for this analysis consists of files containing the
results of comparisons of different MEI encodings of the six editions. Through comparisons using
the Python tool musicdiff [10],'> we obtained the differences between each pair of encodings'?
from which we extract the kinds and numbers of differences that occur. The Bagatelles contain a
total of 38, 785 differences, summed across the six editions of each of the seven Bagatelles (for a
total of 15 x 7 = 105 pairwise comparisons). There are 81 different types of differences.

Some types differences are illustrated in Figure 3a. It shows bars 25-26 from the 5th Bagatelle
in the editions of Breitkopf & Haértel and Schott. In the edition on the left (Breitkopf) the melody in
the right hand is split across staffs. On the right, the same melody is printed in the lower staff (with
one exception). There are also less obvious differences: the numbers to indicate triplets in the left
hand in the first bar of the Breitkopf edition are omitted by Schott, slurs placed above two notes in
the Breitkopf edition are below in the Schott edition, and symbols of quarter rest are different.

For most of the transmission history of these works—and music in general—, prints played
a crucial role, and they heavily influenced the way the broad interested public got to know them
[30]. The process of copying music throughout this history affects the musical text by intention-
ally or accidentally introducing variants [13]. Some printed notational variants do not affect the
performance, like the one shown in Figure 3a. Despite the importance of prints for the historical
reception of music, in musicological research, they are often regarded as less important than other
sources like manuscripts, though the reception of music can heavily influence our own perception
of these historical works today [37].

1 All the editions can be found online at the Beethoven Haus Bonn (https://tinyurl.com/Beethovenhaus0p33)
except for the Breitkopf edition which can be found via the Petrucci Music Library (https://imslp.org/wiki/7_
Bagatelles, _Op.33_(Beethoven, _Ludwig_van).

2 https://github.com/gregchapman-dev/musicdiff.git

13 Find the encodings here: https://github.com/CorpusBeethoviensis/beethoven-diff-docker.git
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(a) Edition by Breitkopf & Hartel. (b) Edition by Schott.

Figure 3: Example for differences between the editions of the 5th Bagatelle, bars 25 and 26, by
Breitkopf & Haértel and Schott. They differ in the placement of the right hand melody, of the
articulations (slur and staccato) of this melody and the numbers to indicate triplets. Also, different
symbols for quarter rests are used.

The species in this case study are the types of differences found in comparing all pairs of edi-
tions of each Bagatelle. The question of unseen species in this case study is: how complete is this
set of differences? Compared to the previous case study, here the unseen species problem is not
the representativeness of a sample of material, but a quantitative introspection of a constructed on-
tology. The implications of high coverage in such a context would be that very few new categories
are likely missed, and therefore the given ontology can potentially be applied to a larger corpus
as-is (e.g., via a machine learning model).

Results. The Chaol estimate for the combined Bagatelles data is S = 85 (—9.3, +26.5). With
S,ps = 81, that means that the coverage of the differences ontology is nearly 0.947(—0.22, +0.12).14
This is an upper bound, so the true coverage may be lower, but it is unlikely that the ontology still
has significant blind spots, though the lower bound based on the CI does communicate some risk.

How early could we estimate how many categories we should first find before having a good
chance of a near-complete ontology? We run the estimation with 1000 sub-samples (without re-
placement) of different sizes & and measure the average S at a given k. At k = 1000 selected out
of the 38,785 differences, average S is underestimated to be 67, with 50 categories observed; at
k = 5000, S = 76 with average S,;s = 66, and at k¥ = 10, 000, somewhat above 25 % of the total
differences, we obtain S = 80, very close to the true S, = 81 categories.!®

If one estimates S from all pairs of a single Bagatelle’s editions, the estimates converge very
quickly to the true number of difference categories for that particular Bagatelle. Using just 10 % of
the total differences from each Bagatelle’s edition pairs, Chaol underestimates the true number of
categories by only 5.2% on average. However, the S, for each complete Bagatelle never reaches
more than 54, so using a single Bagatelle to estimate the total S is never going to enable reaching
the true diversity of distinct editorial differences. This is expected, as each Bagatelle contains
specific musical material that uses only a subset of possible music notation patterns, and therefore
certain types of editorial differences do not have a chance to appear (e.g., explicit vs. implicit
triplets in a composition with no triplets). This result illustrates how sampling assumptions of
Chaol estimators might be violated (each Bagatelle represents a distinct population of editorial
differences, and the result should not be expected to hold for music that uses a different subset of
notation than the Bagatelles), but conversely also how well the estimators work when its sampling
assumptions hold, and emphasizes the value of diverse rather than large samples.

14 The upper bound of the coverage derived from the CI on S is over 100 % with respect to the true because of boundary
effects in the bootstrap procedure when S, bs is very close to S.

15 A more principled projection would use accumulation curves or rarefaction-extrapolation curves; as this paper focuses
on the breadth of applications of USMs rather than depth of methods, we leave these curves for future work.
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Genre Types Tokens TTR f1 f2 Coverage Conf. Int.

March 390 4212 0.093 110 63 0.802 (-0.05, +0.04)
Slide 269 5318 0.051 72 36 0.789 (-0.07, +0.05)
Slip Jig 430 10351 0.042 126 69 0.789 (-0.06, +0.04)
Barndance 329 2698 0.122 114 67 0.772  (-0.07, +0.06)
Reel 4272 104131 0.041 1192 558 0.770 (-0.02, +0.01)
Polka 835 11857 0.070 271 145 0.767 (-0.04, +0.04)
Three-Two 101 516 0.196 34 17 0.748 (-0.14, +0.09)
Waltz 922 8104 0.114 329 166 0.739 (-0.04, +0.04)
Jig 2896 70826 0.041 931 421 0.738 (-0.02, +0.02)
Mazurka 109 888 0.123 48 12 0.532 (-0.15, +0.10)
Total 11663 234330 0.050 3573 1747 0.761 (-0.01, +0.01)

Table 2: Repertoire coverage in different Irish folk genres represented in The Session dataset.
Pearson correlation of coverage and type-token ratio (TTR); p = .28 (p = .35).

3.3 Case Study 3: Folk Music Sessions

Musicians all over the world gather regularly to perform traditional Irish music [45]. The platform
The Session tracks many of these meetings, and moreover hosts a rich database of tunes that its
users have added, including melodies of Irish tunes and their genres, such as Reel, Jig, Polka,
Waltz, etc. Exports of the site’s database are publicly available on GitHub.!® It has been shown that
population size is an important factor for melodic variety [44]. Specifically, while popular tunes
recorded in the Sessions data set show higher variation of melodic complexity in their different
settings, popularity is also strongly related to intermediate complexity of tunes. Given this mainly
performer-centered view, the tunes themselves have received somewhat less attention.

The question that USMs can answer for this scenario is: given that sessions will continue to
take place all over the world and that people record what was played on the website, how many
tunes are likely to still be ‘out there,” either in an almost forgotten tunebook, or in someone’s mind?
Given the partition of this tradition into relatively well-defined genres, we can also ask whether
there are between-genre differences regarding the coverage of the repertoire.

Table 2 shows an overview of all genres in the Session dataset and the numbers of pieces
they contain, sorted according to the coverage estimated with the Chaol estimator. Marches have
highest coverage of approx. 80.2%., whereas the Mazurka coverage is lowest, at approx. 53.2%
— not too surprising, given that Mazurkas are originally a Polish dance form. Taken together,
the tunes recorded in the entire Session dataset are estimated to cover about 76.1% of the entire
Irish tunes repertoire. We can interpret this as showing that The Session project is successful at
documenting and representing the living tradition of Irish music sessions.

3.4 Case Study 4: Harmonic vocabularies

In this case study, we use for the first time an estimator derived in the context of the Unseen Species
problem for the question of the overall size of the harmonic vocabulary of Western tonal music.
For many years now, corpus studies in music theory have been gaining traction, and a variety of
datasets have been created and made available for computational work. Chord vocabularies have
been shown to follow both Zipf’s [31; 36; 40; 47] and Heaps’ laws [35; 41], but these findings have
not yet been extended to estimating what’s still missing from empirical distributions of chords.

' https://github.com/adactio/thesession-data
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Figure 4: Vocabulary coverage (blue) and type-token ratio (TTR; orange) over time, with 2nd-
order polynomial fit to the data points. Note that, for easier comparison, we show 1 — TTR.
Pearson correlation coefficient p = .32 (p = .05).

The recently published Distant Listening Corpus (DLC v2.3) [20] consists currently of 40 sub-
corpora, some of which had been previously published separately [18; 19; 38]. It encompasses
1,238 score encodings by 36 composers from the extended tonal tradition (c. 1550-1945). Each
piece has been analyzed by music theory experts using harmonic labels conforming to an elaborate
annotation scheme based on Roman numerals.!” In total, there are 6,015 different chord types
(species), with a total abundance of 246,166 chords. Table 3 in Appendix A gives an overview,
showing the composers’ names and their birth and death dates, the numbers of chord types and
tokens as well as the type-token ratio (TTR) of their works contained in the DLC. Moreover, the
numbers of singletons and doubletons, and the estimated coverage based on Chaol are shown,
too. Each row shows values for a particular composer, and the last row shows these values for the
aggregated corpus. Taking all DL.C corpora together, the Chao1 estimator asserts that almost 70 %
of the total harmonic vocabulary have been covered by this massive annotation effort, providing
at the same time encouragement for its continuation.

Figure 4 compares the Chaol-based estimates of species coverage (blue) with the TTR values
(orange) for each composer in the DLC.'® In order to facilitate the visual comparison, the figure
shows 1 — TTR. For both quantities, we added a quadratic regression; error bands represent a 95%
confidence interval based on bootstrap samples of the data.'® The error for the Chao1 estimates
fluctuates more because the values are more widely dispersed, especially in the second half of
the timeline. The Pearson correlation between the two sets of datapoints is p = .32 (p ~ .05),
indicating a positive but weak association, as expected.

The interpretation of TTR and Chaol in this context is not straightforward. TTR shows the
empirical fraction between the observed vocabulary size and total number of chord tokens, but
the number of chord tokens depends on many non-random factors, e.g. sonatas tend to be longer
than Lieder, so a higher number of tokens may stem from a composer’s preference for certain
genres. Moreover, while the indicated curve of the TTR over time (orange line in Figure 4) could

7 https://dcmlab.github.io/standards/
18 DLC sub-corpora by the same composer were merged.
19 See https://seaborn.pydata.org/generated/seaborn.regplot.html for details.
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be interpreted somehow to a real change of of the harmonic language over time, the curve fitted
to the Chaol estimates tells us rather something about where further encoding and annotation
efforts should be directed. Apart from the general observation that many digital music corpora
are heavily biased [42], the coverage of the harmonic vocabularies of composers ‘at the fringes’
of the represented timeline could be increased by sampling (i.e., encoding and annotating) more
pieces from around that time—by the same or different composers.

4 General Discussion

In this study we have applied the popular Chaol model to estimate the numbers of unseen species in
a range of cultural contexts that are commonplace in musicological scholarship. We have looked
at two of the largest musicological databases, RISM and Cantus, and estimated how many new
composers and chants, respectively, we should still expect to encounter when continuing these
cataloguing efforts. We have looked at the practice of 19th-century music prints and notational
differences between them caused by to editorial intervention or pure chance, and have provided
a principled answer to the question of how complete an ontology of these differences is. In the
domain of music performance, we have analyzed data about Irish folk music sessions and the
repertoire coverage between different sub-genres. Interestingly, across nearly all genres, coverage
was higher in The Session data than it is for chant genres in Cantus, possibly indicating the strength
of crowdsourcing by practitioners compared to expert efforts — or raising questions about how
restrictive the ecclesiastical regulatory framework for chant in fact may have been compared to
a tradition with less defined boundaries. Finally, addressing music theory, we have looked at the
size of harmonic vocabularies of a great number of composers from the Renaissance onward.

What have we learned from all of this? First of all: recognizing structural similarities between
vastly different fields enables the transfer of methods and can lead to opening up entirely new
avenues of research. Second, using the Chaol estimators is simple: it involves only combining
two easily computable quantities, the numbers of singletons and doubletons. This methods is
accessible without training in formal methods. Third, Unseen Species models can be useful proxies
in assessing whether and where usually scarce resources should be put to use. Their estimates can
differ significantly from other measures of dataset diversity, as we illustrate by comparing Chaol
coverage upper bounds and TTR. One must be careful in how exactly these models are applied:
for instance, the population of interest is assumed to be sampled with replacement, which is not
a safe approximation if the sample size approaches an appreciable fraction of the total population
[46] (where Chaol would over-estimate the species richness lower bound). The assumption that
one is homogeneously sampling a single population also may not hold.

5 Conclusions

Our main goal in applying Unseen Species models in these case studies was to demonstrate that they
can be useful additions to the methodological repertoire of computational musicologists. Surely, it
will not be hard to think of other areas where one could use this model.We encourage our colleagues
to engage with this kind of modeling in their own domains. However, we emphasise that the
estimator relies on specific assumptions that may not hold for all scenarios, and caution has to be
applied regarding the validity of the conclusions to be drawn. The coverage percentages estimated
in this article may in reality lie far from the true (but possibly unknowable) achieved coverage.
The strength of the methodology, however, lies in the fact that it yields a upper bound for this
quantity: there is at least that much to discover. In the end, our work is meant as an invitation to
constructive criticism, enabled by the explicit nature of the approach. Computational modeling
and critical thinking are not opposed (as sometimes suggested), but rather are the same thing in
different disguise.
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Another tip. In some cases, it may be helpful to use paragraph to title individual paragraphs.
For example, if a section describes features for a classifier, you can optionally title each paragraph
with the name of each feature.
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A Tables

Composer Types Tokens TTR fi f2 Coverage Conf. Int.

Béla Bart6k (1881-1945) 709 1191 0.405 513 104 0.359 (-0.06, +0.05)
Erwin Schulhoff (1894-1942) 251 488 0.486 137 61 0.620 (-0.08, +0.07)
Sergei Rachmaninoff (1873-1943) 456 1141 0.600 280 87 0.503 (-0.07, +0.06)
Gustav Mahler (1860-1911) 219 595 0.632 129 42 0.525 (-0.11, +0.09)
Maurice Ravel (1875-1937) 276 861 0.679 113 64 0.735 (-0.08, +0.07)
Claude Debussy (1862-1918) 291 1013 0.713 120 65 0.724 (-0.07, +0.07)
Richard Wagner (1813-1883) 402 1433 0.719 224 50 0.445 (-0.08, +0.06)
Francis Poulenc (1899-1963) 77 278 0.723 18 28 0.930 (-0.14, +0.09)
Nikolai Medtner (1880-1951) 1332 6508 0.795 669 257 0.605 (-0.04, +0.03)
Clara Schumann (1819-1896) 247 1326 0.814 99 43 0.684 (-0.08, +0.07)
Wilhelm Friedemann Bach (1710-1784) 314 1753 0.821 158 56 0.585 (-0.08, +0.07)
Jan Pieterszoon Sweelinck (1562-1621) 86 501 0.828 37 15 0.653 (-0.20, +0.12)
Franz Liszt (1811-1886) 755 5070 0.851 324 161 0.698 (-0.05, +0.04)
Robert Schumann (1810-1856) 265 1840 0.856 105 52 0.714 (-0.08, +0.06)
Edvard Grieg (1843-1907) 1038 8236 0.874 193 340 0.950 (-0.03, +0.03)
Georg Friedrich Héndel (1685-1759) 44 350 0.874 9 12 0.929 (-0.22, +0.10)
Giovanni Battista Pergolesi (1710-1836) 141 1189 0.881 58 16 0.573 (-0.13, +0.09)
Antonin Dvoréak (1841-1904) 177 1539 0.885 53 47 0.856 (-0.09, +0.07)
Ignaz Pleyel (1757-1831) 179 1567 0.886 67 44 0.778 (-0.10, +0.08)
Jacopo Peri (1561-1633) 316 2884 0.890 151 57 0.612 (-0.09, +0.07)
Girolamo Frescobaldi (1583-1643) 536 5318 0.899 248 85 0.597 (-0.06, +0.05)
Pyotr Ilyich Tchaikovsky (1840-1893) 278 3059 0.909 52 67 0.932 (-0.06, +0.04)
Frédéric Chopin (1810-1849) 726 9125 0.920 226 137 0.796 (-0.04, +0.03)
Felix Mendelssohn (1809-1847) 1094 14758 0.926 448 181 0.664 (-0.04, +0.03)
Claudio Monteverdi (1567-1643) 232 3289 0.929 111 38 0.589 (-0.10, +0.08)
Carl Philipp Emanuel Bach (1714-1788) 698 11191 0.938 290 116 0.658 (-0.05, +0.04)
Johann Christian Bach (1735-1782) 314 5063 0.938 132 53 0.656 (-0.07, +0.06)
Domenico Scarlatti (1685-1757) 733 12490 0.941 275 153 0.748 (-0.05, +0.04)
Franz Schubert (1797-1828) 308 6200 0.950 0 71 1.000 (-0.03, +0.02)
Johann Sebastian Bach (1685-1750) 931 18493 0.950 390 143 0.636 (-0.04, +0.04)
Heinrich Schiitz (1585-1672) 471 11709 0960 161 74 0.729 (-0.06, +0.04)
Francgois Couperin (1668—1733) 333 9472 0.965 147 40 0.552 (-0.08, +0.06)
Arcangelo Corelli (1653-1713) 490 14314 0966 191 66 0.639 (-0.06, +0.05)
Ludwig van Beethoven (1770-1827) 1722 50052 0.966 732 301 0.659 (-0.03, +0.03)
Wolfgang Amadeus Mozart (1756-1791) 466 15272 0969 157 82 0.756  (-0.06, +0.05)
Leopold KoZeluch (1747-1818) 361 16598 0.978 77 74 0.900 (-0.06, +0.04)
Total 6015 246166 0.024 2438 1097 0.681 (-0.02, +0.02)

Table 3: Harmonic vocabularies of composers represented in the Distant Listening Corpus, sorted

by estimated coverage.
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